Bulletin of Volcanology

, Volume 73, Issue 7, pp 789–810 | Cite as

The 512 AD eruption of Vesuvius: complex dynamics of a small scale subplinian event

  • R. CioniEmail author
  • A. Bertagnini
  • D. Andronico
  • P. D. Cole
  • F. Mundula
Research Article


We describe the products of the hitherto poorly known 512 AD eruption at Vesuvius, Italy. The deposit records a complex sequence of eruptive events, and it has been subdivided into eight main units, composed of stratified scoria lapilli or thin subordinate ash-rich layers. All the units formed by deposition from tephra fallout, pyroclastic density currents of limited extent being restricted to the initial stages of the eruption (U2). The main part of the deposit (U3 and U5) is characterized by a striking grain size alternation of fine to coarse lapilli, similar to that often described for mid-intensity, explosive eruptions. The erupted products have a phonotephritic composition, with progressively less evolved composition from the base to the top of the stratigraphic sequence. Based on different dispersal, sedimentological and textural features of the products, we identify five phases related to different eruptive styles: opening phase (U1, U2), subplinian phase (U3 to U5), pulsatory phreatomagmatic phase (U6), violent strombolian phase (U7) and final ash-dominated phase (U8). A DRE volume of 0.025 km3 has been calculated for the total fallout deposit. Most of the magma was erupted during the subplinian phase; lithic dispersal data indicate peak column heights of between 10 and 15 km, which correspond to a mass discharge rate (MDR) of 5 × 106 kg s−1. The lower intensity, violent strombolian phase coincided with the eruption of the least evolved magma; a peak column height of 6–9 km, corresponding to an MDR of 1 ×10 6 kg s −1, is estimated from field data. Phreatomagmatic activity played a minor role in the eruption, only contributing to the ash-rich deposits of U1, U4, U6 and U8.

The two most striking features of the 512 AD eruption are the recurrent shifting of the eruption style and the pulsatory nature of the subplinian phase. Basing on a large set of observational data, we propose a model to explain this complex dynamics, also observed in other eruptions of similar scale from Vesuvius and elsewhere. The inbalance between the rates of magma supply and magma eruption may have caused the frequent changes in the eruptive style. Conversely, the high frequency oscillations of magma discharge recorded by the deposits of the subplinian phase were possibly related to cyclic instabilities in the permeability of the low viscosity magma column, which modulated magma fragmentation and discharge.


Subplinian Vesuvius Magma fragmentation Phreatomagmatism Eruption dynamics 



The research was done with the contribution of the EC EVR1-CT-2002-40026 Exploris project (Responsible Augusto Neri) and from funds from the Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento Protezione Civile (Project V3-4 Vesuvius) to Raffaello Cioni. Dr Lucia Corsini is greatly acknowledged for field and analytical work, and Patrizia Pantani for graphic assistance. FM acknowledges the Fondazione Banco di Sardegna for founding his research fellowship. We greatly acknowledge the precious suggestions of John Stix, Marc Antoine Longpré and an anonymous reviewer.


  1. Alfano GB (1924) Le eruzioni del Vesuvio tra il 79 ed il 1631 (studio bibliografico). Napoli, Scuola Tipografica Pontificia per i figli dei carceratiGoogle Scholar
  2. Alidibirov M, Dingwell DB (2000) Three fragmentation mechanisms for highly viscous magma under rapid decompression. J Volcanol Geotherm Res 100:413–421CrossRefGoogle Scholar
  3. Andronico D, Cioni R (2002) Contrasting styles of Mount Vesuvius activity in the period between the Avellino and Pompeii Plinian eruptions, and some implications for assessment of future hazards. Bull Volcanol 64:372–391. doi: 10.1007/s00445-002-0215-4 CrossRefGoogle Scholar
  4. Arrighi S, Principe C, Rosi M (2001) Violent Strombolian and sub-Plinian eruptions at Vesuvius during post-1631 activity. Bull Volcanol 63:126–150. doi: 10.1007/s004450100130 CrossRefGoogle Scholar
  5. Barberi F, Navarro JM, Rosi M, Santacroce R, Sbrana A (1988) Explosive interaction of magma with ground water: insights from xenoliths and geothermal drillings. Rend SIMP 43:901–926Google Scholar
  6. Barberi F, Cioni R, Rosi M, Santacroce R, Sbrana A, Vecci R (1989) Magmatic and phreatomagmatic phases in explosive eruptions of Vesuvius as deduced by grain-size and compositional analysis of pyroclastic deposits. J Volcanol Geotherm Res 38:287–307CrossRefGoogle Scholar
  7. Benn DI, Ballantyne CK (1993) The description and representation of particle shape. Earth Surf Proc Land 18:665–672CrossRefGoogle Scholar
  8. Bertagnini A, Cioni R, Guidoboni E, Rosi M, Neri A, Boschi E (2006) Eruption early warning at Vesuvius: The A.D. 1631 lesson. Geophys Res Lett 33:L18317. doi: 10.1029/2006GL027297 CrossRefGoogle Scholar
  9. Blower JD, Mader HM, Wilson SDR (2001) Coupling of viscous and diffusive controls on bubble growth during explosive volcanic eruptions. Earth Planet Sci Lett 193:47–56CrossRefGoogle Scholar
  10. Bursik M (1993) Subplinian eruption mechanisms inferred from volatile and clast dispersal data. J Volcanol Geotherm Res 57:57–70CrossRefGoogle Scholar
  11. Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125CrossRefGoogle Scholar
  12. Cashman KV, Mckay D, Pioli L, Rosi M, Rust A, Wallace P (2007) A new classification system for basaltic eruptions. IUGG General Assembly, PerugiaGoogle Scholar
  13. Cioni R, Marianelli P, Sbrana A (1992a) Dynamics of the AD 79 eruption: Stratigraphic, sedimentological and geochemical data on the successions of the Somma-Vesuvius southern and eastern sectors. Acta Vulcanol 2:109–123Google Scholar
  14. Cioni R, Sbrana A, Vecci R (1992b) Morphologic features of juvenile pyroclasts from magmatic and phreatomagmatic deposits of Vesuvius. J Volcanol Geotherm Res 51:61–78CrossRefGoogle Scholar
  15. Cioni R, Civetta L, Marianelli P, Métrich N, Santacroce R, Sbrana A (1995) Compositional layering and syneruptive mixing of a periodically refilled shallow magma chamber: the AD 79 Plinian eruption of Vesuvius. J Petrol 36:739–776 Google Scholar
  16. Cioni R, Marianelli P, Santacroce R (1998) Thermal and compositional evolution of the shallow magma chambers of Vesuvius: Evidence from pyroxene phenocrysts and melt inclusions. J Geophys Res 103:18,277–18,294CrossRefGoogle Scholar
  17. Cioni R, Marianelli P, Santacroce R (1999) Temperature of Vesuvius magmas. Geology 27:443–446Google Scholar
  18. Cioni R, Marianelli P, Santacroce R, Sbrana A (2000) Plinian and subplinian eruptions. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 477–494Google Scholar
  19. Cioni R, Sulpizio R, Garruccio N (2003) Variability of the eruption dynamics during a subplinian event: the Greenish Pumice eruption of Somma–Vesuvius (Italy). J Volcanol Geotherm Res 124:89–114. doi: 10.1016/S0377-0273(03)00070-2 CrossRefGoogle Scholar
  20. Cioni R, Bertagnini A, Santacroce R, Andronico D (2008) Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new classification scheme. J Volcanol Geotherm Res 178:331–346. doi: 10.1016/j.jvolgeores.2008.04.024 CrossRefGoogle Scholar
  21. Cole PD, Queiroz G, Wallenstein N, Gaspar JL, Duncan AM, Guest JE (1995) An historic subplinian/phreatomagmatic eruption: the 1630 AD eruption of Furnas volcano San Miguel, Azores. J Volcanol Geotherm Res 69:117–135CrossRefGoogle Scholar
  22. Colucci Pescatori G (1986) Osservazioni su Abellinum tardo antica. App.: Fonti antiche relative ad eruzioni vesuviane ed altri fenomeni vulcanici successivi al 79 D.C.. Treblement de terre, eruptions volcaniques et vie des hommes dans la Campanie antique. Biblioteque de l’Institut Français de Naples Iis, vol VII, Napoli, 134–141Google Scholar
  23. Costa A, Melnik O, Sparks RSJ, Voight B (2007) Control of magma flow in dykes on cyclic lava dome extrusion. Geophys Res Lett 34:L02303. doi: 10.1029/2006GL027466 CrossRefGoogle Scholar
  24. Dellino P, La Volpe L (1995) Fragmentation versus transportation mechanisms in the pyroclastic sequence of Monte Pilato—Rocche Rosse (Lipari, Italy). J Volcanol Geotherm Res 64:211–231CrossRefGoogle Scholar
  25. Denlinger RP, Hoblitt RP (1999) Cyclic eruptive behavior of silicic volcanoes. Geology 27:459–462CrossRefGoogle Scholar
  26. Di Muro A, Neri A, Rosi M (2004) Contemporaneous convective and collapsing eruptive dynamics: the transitional regime of explosive eruptions. Geophys Res Lett 31:L10607. doi: 10.1029/2004GL019709 CrossRefGoogle Scholar
  27. Dingwell DB (1996) Volcanic dilemma: flow or blow? Science 273:1054–1055CrossRefGoogle Scholar
  28. D’Oriano C, Poggianti E, Bertagnini A, Cioni R, Landi P, Polacci M, Rosi M (2005) Changes in eruptive styles during the A.D. 1538 Monte Nuovo eruption (Phleagrean Fields, Italy): the role of syneruptive crystallization. Bull Volcanol 67:601–621. doi: 10.1007/s00445-004-0397-z CrossRefGoogle Scholar
  29. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167CrossRefGoogle Scholar
  30. Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, Berlin Heidelberg New YorkGoogle Scholar
  31. Giordano D, Potuzak M, Romano C, Dingwell DB, Nowak M (2008) Viscosity and glass transition temperature of hydrous melts in the system CaAl2Si2O8–CaMgSi2O6. Chem Geol 256:203–215. doi: 10.1016/ CrossRefGoogle Scholar
  32. Graham DJ, Midgley ND (2000) Graphical representation of particle shape using triangular diagrams: an Excel spreadsheet method. Earth Surf Proc Land 25:1473–1477CrossRefGoogle Scholar
  33. Guidoboni E (2008) Vesuvius: A historical approach to the 1631 eruption “cold data” from the analysis of three contemporary treatises. J Volcanol Geotherm Res 178:347–358. doi: 10.1016/ CrossRefGoogle Scholar
  34. Hammer JE, Cashman KV, Hoblitt R, Newman S (1999) Degassing and microlite crystallization during the pre-climatic events of the 1991 eruption of the MT. Pinatubo, Philippines. Bull Volcanol 60:355–380. doi: 10.1007/s004450050238 CrossRefGoogle Scholar
  35. Heiken G, Wolhetz K (1985) Volcanic Ash. University of California Press, BerkeleyGoogle Scholar
  36. Hofmann HJ (1994) Grain-shape indices and isometric graphs. J Sed Res A64(4):916–920Google Scholar
  37. Houghton BF, Schmincke H-U (1989) Rothenberg scoria cone, East Eifel: a complex Strombolian and phreatomagmatic volcano. Bull Volcanol 52:28–48CrossRefGoogle Scholar
  38. Houghton BF, Gonnerman HM (2008) Basaltic explosive volcanism: constraints from deposits and models. Chemie der Erde Geochemistry 68:117–140CrossRefGoogle Scholar
  39. Houghton BF, Wilson CJN, Pyle DM (2000) Pyroclastic fall deposits. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 555–570Google Scholar
  40. Illenberger WK (1991) Pebble shape (and size!). J Sed Petrol 61:756–767Google Scholar
  41. Johnston-Lavis HJ (1884) The Geology of Monte Somma and Vesuvius, being a study in Vulcanology. Q J Geol Soc London 40:35–149CrossRefGoogle Scholar
  42. Klug C, Cashman KV (1996) Permeability development in vesciculating magmas: implication for fragmentation. Bull Volcanol 58:87–100CrossRefGoogle Scholar
  43. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin R (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750Google Scholar
  44. Marianelli P, Métrich N, Sbrana A (1999) Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius. Bull Volcanol 61:48–63. doi: 10.1007/s004450050262 CrossRefGoogle Scholar
  45. Marianelli P, Sbrana A, Métrich N, Cecchetti A (2005) The deep feeding system of Vesuvius involved in recent violent Strombolian eruptions. Geophys Res Let 32:L02306. doi: 10.1029/2004GL021667 CrossRefGoogle Scholar
  46. Morrissey MM, Mastin LG (2000) Vulcanian eruptions. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 463–475Google Scholar
  47. Morrissey MM, Zimanowski B, Wohletz K, Buettner R (2000) Phreatomagmatic Fragmentation. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 431–445Google Scholar
  48. Orsi G, D’Antonio M, De Vita S, Gallo G (1992) The Neapolitan Yellow Tuff, a large-magnitude trachytic phreatoplinian eruption: eruptive dynamics, magma withdrawal and caldera collapse. J Volcanol Geotherm Res 53:275–287CrossRefGoogle Scholar
  49. Papale P (1999) Strain-induced magma fragmentation in esplosive eruptions. Nature 397:425–428CrossRefGoogle Scholar
  50. Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geotherm Res 134:77–107. doi: 10.1016/j.jvolgeores.2004.01.002 CrossRefGoogle Scholar
  51. Pioli L, Erlund E, Johnson E, Cashman K, Wallace P, Rosi M, Delgado Granados H (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Parícutin Volcano 1943–1952 (Mexico). Earth Plan Sci Lett 271:359–368. doi: 10.1016/j.epsl.2008.04.026 CrossRefGoogle Scholar
  52. Principe C, Tanguy JC, Arrighi S, Paiotti A, Le Goff M, Zoppi U (2004) Chronology of Vesuvius activity from A.D. 79 to 1631 based on archeomagnetism of lavas and historical sources. Bull Volcanol 66:703–724. doi: 10.1007/s00445-004-0348-8 CrossRefGoogle Scholar
  53. Pyle DM (1989) The thickness, volume and grain size of tephra fall deposits. Bull Volcanol 51:1–15CrossRefGoogle Scholar
  54. Rasband WS (1997) ImageJ. U. S. National Institutes of Health, Bethesda,Maryland, USA,
  55. Rolandi G, Barrella AM, Borrelli A (1993) The 1631 eruption of Vesuvius. J Volcanol Geotherm Res 58:183–201CrossRefGoogle Scholar
  56. Rolandi G, Petrosino P, McGeehin J (1998) The interplinian activity at Somma-Vesuvius in the last 3, 500 years. J Volcanol Geotherm Res 82:19–52CrossRefGoogle Scholar
  57. Rolandi G, Munno R, Postiglione I (2004) The A.D. 472 eruption of the Somma volcano. J Volcanol Geotherm Res 129:291–319. doi: 10.1016/S0377-0273(03)00279-8 CrossRefGoogle Scholar
  58. Rosi M, Santacroce R (1983) The A.D. 472 “Pollena” eruption: volcanological and petrological data for this poorly-known, Plinian-type event at Vesuvius. J Volcanol Geotherm Res 17:249–271CrossRefGoogle Scholar
  59. Rosi M, Principe C, Vecci R (1993) The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data. J Volcanol Geotherm Res 58:183–201CrossRefGoogle Scholar
  60. Sahagian DL, Proussevitch AA (1998) 3D particle distributions from 2D obsevations: stereology for natural applications. J Volcanol Geotherm Res 84:173–196CrossRefGoogle Scholar
  61. Santacroce R, Sbrana A (2003) Geological map of Vesuvius 1:15, 000 scale. SELCA, FirenzeGoogle Scholar
  62. Santacroce R, Bertagnini A, Civetta L, Landi P, Sbrana A (1993) Eruptive dynamics and petrogenetic processes in a very shallow magma reservoir: the 1906 eruption of Vesuvius. J Petrol 34:383–425Google Scholar
  63. Santacroce R, Cioni R, Civetta L, Marianelli P, Métrich N, Sbrana A (1994) How Vesuvius works. In “large explosive eruptions”. Atti Conv Acc Naz Lincei 112:185–196Google Scholar
  64. Scandone R, Giacomelli L, Fattori Speranza F (2008) Persistent activity and violent strombolian eruptions at Vesuvius between 1631 and 1944. J Volcanol Geothermal Res 170:167–180CrossRefGoogle Scholar
  65. Schmincke HU (2004) Volcanism. Springer, BerlinCrossRefGoogle Scholar
  66. Sheridan MF, Barberi F, Rosi M, Santacroce R (1981) A model from Plinian eruptions of Vesuvius. Nature 289:282–285CrossRefGoogle Scholar
  67. Sneed ED, Folk RL (1958) Pebbles in the lower Colorado River, Texas, a study in particle morphogenesis. J Geol 66:114–150CrossRefGoogle Scholar
  68. Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volcanol Geotherm Res 3:1–37CrossRefGoogle Scholar
  69. Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15CrossRefGoogle Scholar
  70. Sparks RSJ (1997) Causes and consequences of pressurization in lava dome eruptions. Earth Planet Sci Lett 150:177–189CrossRefGoogle Scholar
  71. Sparks RSJ, Bursik M, Ablay GJ, Thomas RME, Carey SN (1992) Sedimentation of tephra by volcanic plumes. Part 2: controls on thickness and grain-size variation of tephra fall deposits. Bull Volcanol 54:685–695CrossRefGoogle Scholar
  72. Stormer JC Jr, Nicholls J (1978) XLFRAC: a program for the interactive testing of magmatic differentiation models. Comput Geosci 4:143–159CrossRefGoogle Scholar
  73. Stothers BR, Rampino RM (1983) Volcanic Eruptions in the Mediterranean before A.D. 630 from written and archaeological sources. J Geophys Res 88:6357–6371CrossRefGoogle Scholar
  74. Stothers RB (1984) The great Tambora eruption in 1815 and its aftermath. Science 224:1191–1198CrossRefGoogle Scholar
  75. Sulpizio R, Mele D, Dellino P, La Volpe L (2005) A complex, Subplinian-type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy. Bull Volcanol 67:743–767. doi: 10.1007/s00445-005-0414-x CrossRefGoogle Scholar
  76. Varekamp JC (1993) Some remarks on volcanic vent evolution during plinian eruptions. J Volcanol Geotherm Res 54:309–318CrossRefGoogle Scholar
  77. Walker GPL, Croasdale R (1972) Characteristics of some basaltic pyroclastics. Bull Volcanol 35:303–317CrossRefGoogle Scholar
  78. Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruptions-IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys J R Astron Soc 63:117–148Google Scholar
  79. Wohletz KH (1986) Explosive magma-water interactions: thermodynamics, explosion mechanisms and field studies. Bull Volcanol 48:245–264CrossRefGoogle Scholar
  80. Wohletz KH (2000) Were the Dark Ages triggered by volcano-related climate changes in the 6th Century? Eos Trans. AGU 81(48), Fall Meet SupplGoogle Scholar
  81. Wohletz KH, Sheridan MF, Brown WK (1989) Particle size-distributions and the Sequential Fragmentation/Transport theory applied to volcanic ash. J Geophys Res 94:15703–15721CrossRefGoogle Scholar
  82. Wong LJ, Larsen JF (2010) The Middle Scoria sequence: a Holocene violent strombolian, subplinian and phreatomagmatic eruption of Okmok volcano, Alaska. Bull Volcanol 72:17–31CrossRefGoogle Scholar
  83. Wylie JJ, Voight B, Whitehead JA (1999) Instability of magma flow from volatile-dependent viscosity. Science 285:1883–1885CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • R. Cioni
    • 1
    • 2
    Email author
  • A. Bertagnini
    • 2
  • D. Andronico
    • 3
  • P. D. Cole
    • 4
    • 5
  • F. Mundula
    • 1
  1. di Scienze della TerraUniversità di CagliariCagliariItaly
  2. 2.Istituto Nazionale di Geofisica e Vulcanologia, sezione di PisaPisaItaly
  3. 3.Istituto Nazionale di Geofisica e Vulcanologia, sezione di CataniaCataniaItaly
  4. 4.Montserrat Volcano ObservatoryFlemmingsWest Indies
  5. 5.Seismic Research CentreTrinidad and TobagoWest Indies

Personalised recommendations