Bulletin of Volcanology

, Volume 73, Issue 6, pp 753–765 | Cite as

Models of maar volcanoes, Lunar Crater (Nevada, USA)

  • Greg A. ValentineEmail author
  • Nicole L. Shufelt
  • Amanda R. L. Hintz
Research Article


Maar volcanoes are generally understood to be the result of highly energetic, explosive interaction between magma and water (groundwater or surface water). Two end-member conceptual models have been proposed to explain the dimensions (diameter, depth) of maar craters: (1) an incremental growth model, where a crater grows due to subsidence and ejection of debris over the course of many explosions, and the final size is an integrated result of multiple explosive events; (2) a model in which the dimensions of a maar crater are the result of the largest single explosion during the lifetime of the maar (major-explosion dominated model). In the latter case, the maar size can be used to estimate the energy and depth of the largest explosion, which in turn allows estimation of the magma mass involved. This paper describes Lunar Crater maar (Nevada, USA) and tests the two models as explanations for the characteristics of the volcano, in particular the major-explosion dominated model. This model implies magma mass and supply rates that are unrealistic, and the tephra at the maar do not contain key features observed in the ejecta at large single-explosion craters. The incremental growth model seems most suitable based upon geological evidence.


Maar Diatreme Phreatomagmatic Explosion Crater Monogenetic 



This work was funded in part by the US National Science Foundation (grant EAR-1016100). We thank James White, Jocelyn McPhie, Bruce Kjarsgaard, and Pierre-Simon Ross for insightfuls reviews of earlier drafts of the manuscript


  1. Austin-Erickson A, Büttner R, Dellino P, Ort MH, Zimanowski B (2008) Phreatomagmatic explosions of rhyolitic magma: experimental and field evidence. J Geophys Res 113:B11201. doi: 10.1029/2008JB005731 CrossRefGoogle Scholar
  2. Büttner R, Zimanowski B (1998) Physics of thermohydraulic explosions. Phys Rev E 57:5726–5729CrossRefGoogle Scholar
  3. Crowe BM, Wohletz KH, Vaniman DT, Gladney E, Bower N (1986) Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Los Alamos Nat Lab Rep LA-9325-MS vol. II, Los Alamos, New Mexico, USAGoogle Scholar
  4. Delaney PT (1982) Rapid intrusion of magma into wet rock: groundwater flow due to pore pressure increases. J Geophys Res 87:7739–7756CrossRefGoogle Scholar
  5. Delaney PT, Pollard DD (1981) Deformation of host rocks and flow of magma during growth of minette dikes and breccia bearing intrusions near Ship Rock, New Mexico. US Geol Surv Prof Paper 1202:61Google Scholar
  6. Dickson LD (1995) Volcanology and geochemistry of Pliocene and Quaternary basalts on Citadel Mountain, Lunar Crater Volcanic Field, Pancake Range, Nevada. MS Thesis, University of Nevada Las Vegas (USA)Google Scholar
  7. Elsworth D, Voight B (1992) Theory of dike intrusion in a saturated porous solid. J Geophys Res 97:9105–9117CrossRefGoogle Scholar
  8. Erlund EJ, Cashman KV, Wallace PJ, Pioli L, Rosi M, Johnson E, Delgado Granados H (2010) Compositional evolution of magma from Parícutin volcano, Mexico: the tephra record. J Volcanol Geotherm Res 197:167–187CrossRefGoogle Scholar
  9. Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, Berlin, p 472Google Scholar
  10. Foland KA, Bergman SC (1992) Temporal and spatial distribution of basaltic volcanism in the Pancake and Reveille Ranges north of Yucca Mountain. Proc Intl Nuclear Waste Symposium, v. 2, American Nuclear Society and American Society of Civil Engineers 2366–2371.Google Scholar
  11. Gaffney ES, Damjanac B, Valentine GA (2007) Localization of volcanic activity: 2. Effects of pre-existing structure. Earth Planet Sci Lett 263:323–338CrossRefGoogle Scholar
  12. Goto A, Taniguchi H, Yoshida M, Ohba T, Oshima H (2001) Effect of explosions energy and depth to the formation of blast wave and crater: field explosion experiment for the understanding of volcanic explosion. Geophys Res Lett 28:4287–4290CrossRefGoogle Scholar
  13. Gregg TKP, Zimbleman JR (2000) Volcanic vestiges, pulling it all together. In: Zimbleman JR, Gregg TKP (eds) Environmental effects on volcanic eruptions, from deep oceans to deep space. Kluwer Academic/Plenum, New York, pp 243–250CrossRefGoogle Scholar
  14. Kargel JS (1987) The geochemistry of basalts and mantle inclusions from the Lunar Crater Volcanic Field, Nevada: petrogenesis and geodynamic implications. MS thesis, Ohio State University, Columbus, Ohio (USA)Google Scholar
  15. Keating GN, Valentine GA, Krier DJ, Perry FV (2008) Shallow plumbing systems for small-volume basaltic volcanoes. Bull Volcanol 70:563–582. doi: 10.1007/s00445-007-0154-1 CrossRefGoogle Scholar
  16. Kieffer SW (1981) Fluid dynamics of the May 18 blast at Mount St. Helens. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington, US Geol Surv Prof Pap 1250: 379–400Google Scholar
  17. Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff-rings. Bull Volcanol 48:265–274CrossRefGoogle Scholar
  18. Lorenz V (2009) The maar-diatreme volcano: a peculiar volcano type that largely prefers to work underground. Proceedings, 3rd Int. Maar Conf., Malargüe, ArgentinaGoogle Scholar
  19. Lorenz V, Kurszlaukis S (2007) Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes. J Volcanol Geotherm Res 159:4–32CrossRefGoogle Scholar
  20. Mastin LG (1991) A simple calculator of ballistic trajectories for blocks ejected during volcanic eruptions. US Geol Surv Open-File Rep 01-45, v. 1.2Google Scholar
  21. Melosh HJ (1989) Impact cratering a geologic process. Oxford Univ Press, New York, 245Google Scholar
  22. Nemeth K, White JDL (2003) Reconstructing eruption processes of a Miocene monogenetic volcanic field from vent remnants: Waipiata Volcanic Field, South Island, New Zealand. J Volcanol Geotherm Res 124:1–21CrossRefGoogle Scholar
  23. Nemeth K, Martin U (2007) Shallow sill and dyke complex in western Hungary as a possible feeding system of phreatomagmatic volcanoes in “soft-rock” environment. J Volcanol Geotherm Res 159:138–152CrossRefGoogle Scholar
  24. Nemeth K, Martin U, Sz H (2001) Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary). J Volcanol Geotherm Res 111:111–135CrossRefGoogle Scholar
  25. Ross P-S, White JDL (2006) Debris jets in contintental phreatomagmatic volcanoes: a field study on their subterranean deposits in the Coombs Hill vent complex, Antarctica. J Volcanol Geotherm Res 149:62–84CrossRefGoogle Scholar
  26. Ross P-S, White JDL, Zimanowski B, Büttner R (2008a) Multiphase flow above explosion sites in debris-filled volcanic vents: Insights from analogue experiments. J Volcanol Geotherm Res 178:104–112CrossRefGoogle Scholar
  27. Ross P-S, White JDL, Zimanowski B, Büttner R (2008b) Rapid injection of particles and gas into non-fluidized granular material, and some volcanological implications. Bull Volcanol 70:1151–1168. doi: 10.1007/s00445-008-0230-1 CrossRefGoogle Scholar
  28. Sato H, Taniguchi H (1997) Relationship between crater size and ejecta volume of recent magmatic and phreato-magmatic eruptions: implications for energy partitioning. Geophys Res Lett 24:205–208CrossRefGoogle Scholar
  29. Self S, Kienle J, Huot J-P (1980) Ukinrek Maars, Alaska, II. Deposits and formation of the 1977 craters. J Volcano Geotherm Res 7:39–65CrossRefGoogle Scholar
  30. Shepard MK, Arvidson RE, Caffee M, Finkel R, Harris L (1995) Cosmogenic exposure ages of basalt flows: Lunar Crater volcanic field, Nevada. Geology 23:21–24CrossRefGoogle Scholar
  31. Starostin AB, Barmin AA, Melnik OE (2005) A transient model for explosive and phreatomagmatic eruptions. J Volcano Geotherm Res 143:133–151CrossRefGoogle Scholar
  32. Taddeucci J, Sottili G, Palladino DM, Ventura G, Scarlato P (2010) A note on maar eruption energetics: current models and their application. Bull Volcanol 72: doi: 10.1007/s00445-009-0298-2
  33. Valentine GA, Harrington CD (2006) Clast size controls and longevity of Pleistocene desert pavements at Lathrop Wells and Red Cone volcanoes, southern Nevada. Geology 34:533–536. doi: 10.1130/G22481.1 CrossRefGoogle Scholar
  34. Valentine GA, Krogh KEC (2006) Emplacement of shallow dikes and sills beneath a small basaltic volcanic center—the role of preexisting structure (Paiute Ridge, southern Nevada, USA). Earth Planet Sci Lett 246:217–230CrossRefGoogle Scholar
  35. Valentine GA, Perry FV (2006) Decreasing magmatic footprints of individual volcanoes in a waning basaltic field. Geophys Res Lett 33:L14305. doi: 10.1029/2006GL026743 CrossRefGoogle Scholar
  36. Walker GPL (1973) Lengths of lava flows. Phil Trans R Soc Lond Ser A 274:107–118CrossRefGoogle Scholar
  37. Wells SG, Dohrenwend JC, McFadden LD, Turin BD, Mahrer KD (1985) Late Cenozoic landscape evolution on lava flow surfaces of the Cima volcanic field, Mojave Desert, California. Geol Soc Am Bull 96:1518–1529CrossRefGoogle Scholar
  38. White JDL (1991) Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA. Bull Volcanol 53:239–258CrossRefGoogle Scholar
  39. Wohletz KH, McQueen RG (1984) Experimental studies of hydrovolcanic volcanism. Studies in geophysics. National Academic, Washington, pp 158–169Google Scholar
  40. Wood CA (1980) Morphometric evolution of cinder cones. J Volcanol Geotherm Res 7:387–413CrossRefGoogle Scholar
  41. Yogodzinski GM, Naumann TR, Smith EI, Bradshaw TK (1996) Evolution of a mafic volcanic field in the central Great Basin, south central Nevada. J Geophys Res 101:17425–17445CrossRefGoogle Scholar
  42. Yokoo A, Taniguchi H, Goto A, Oshima H (2002) Energy and depth of Usu 2000 phreatic explosions. Geophys Res Lett 29:2195. doi: 10.1029/2002GL015728 CrossRefGoogle Scholar
  43. Zimanowski B, Fröhlich G, Lorenz V (1995) Experiments on steam explosion by interaction of water with silicate melts. Nuc Eng Design 155:335–343CrossRefGoogle Scholar
  44. Zimanowski B, Büttner R, Lorenz V (1997a) Premixing of magma and water in MFCI experiments. Bull Volcanol 58:491–495CrossRefGoogle Scholar
  45. Zimanowski B, Büttner R, Lorenz V, Häfele H-G (1997b) Fragmentation of basaltic melt in the course of explosive volcanism. J Geophys Res 102:803–814CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Greg A. Valentine
    • 1
    Email author
  • Nicole L. Shufelt
    • 1
  • Amanda R. L. Hintz
    • 1
  1. 1.Department of Geology and Center for Geohazards StudiesUniversity at BuffaloBuffaloUSA

Personalised recommendations