Bulletin of Volcanology

, Volume 73, Issue 5, pp 577–593 | Cite as

Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach

Research Article

Abstract

We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth’s volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.

Keywords

MODIS Time series analysis MODVOLC GOES Kilauea volcano Anatahan volcano Cantarell oil field 

References

  1. Barnes WL, Pagano TS, Salomonson VV (1998) Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans Geosci Remote Sens 36(4):1088–1100CrossRefGoogle Scholar
  2. Bonneville A, Gouze P (1992) Thermal survey of Mount Etna volcano from space. Geophys Res Lett 19(7):725–728CrossRefGoogle Scholar
  3. Cuomo V, Lasaponara R, Tramutoli V (2001) Evaluation of a new satellite-based method for forest fire detection. Int J Remote Sens 22(9):1799–1826Google Scholar
  4. Dehn J, Dean K, Engle K (2000) Thermal monitoring of North Pacific volcanoes from space. Geology 28(8):755CrossRefGoogle Scholar
  5. Dehn J, Dean KG, Engle K, Izbekov P (2002) Thermal precursors in satellite images of the 1999 eruption of Shishaldin Volcano. Bull Volcanol 64(8):525–534CrossRefGoogle Scholar
  6. Di Bello G, Filizzola C, Lacava T, Marchese F, Pergola N, Pietrapertosa C, Piscitelli S, Scaffidi I, Tramutoli V (2004) Robust satellite techniques for volcanic and seismic hazards monitoring. Ann Geophys 47(1):49–64Google Scholar
  7. Flynn L, Wright R, Garbeil H, Harris A, Pilger E (2002) A global thermal alert system using MODIS: initial results from 2000–2001. Adv Environ Monit Model 1(1):37–69Google Scholar
  8. Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87(2–3):273–282CrossRefGoogle Scholar
  9. Harris AJL, Stevenson DS (1997) Thermal observations of degassing open conduits and fumaroles at Stromboli and Vulcano using remotely sensed data. J Volcanol Geotherm Res 76:175–198CrossRefGoogle Scholar
  10. Harris AJL, Vaughan RA, Rothery DA (1995) Volcano detection and monitoring using AVHRR data: the Krafla eruption, 1984. Int J Remote Sens 16:1001–1020CrossRefGoogle Scholar
  11. Harris AJL, Pilger E, Flynn LP, Garbeil H, Mouginis-Mark PJ, Kauahikaua J, Thornber C (2001) Automated, high temporal resolution thermal analysis of Kilauea volcano, Hawai‘i, using GOES satellite data. Int J Remote Sens 22(6):945–967CrossRefGoogle Scholar
  12. Heliker C, Swanson DA, Takahashi TJ (2003) The Pu‘u ‘Ö‘ö-Küpaianaha eruption of Kïlauea volcano, Hawai‘i: the first 20 Years. USGS Prof Paper 1676Google Scholar
  13. Higgins J, Harris AJL (1997) VAST: a program to locate and analyse volcanic thermal anomalies automatically from remotely sensed data. Comput Geosci 23:627–645CrossRefGoogle Scholar
  14. Kaufman YJ, Justice CO, Flynn LP, Kendall JD, Prins EM, Giglio L, Ward DE, Menzel WP, Setzer AW (1998) Potential global fire monitoring from EOS-MODIS. J Geophys Res 103(D24):32215–32238CrossRefGoogle Scholar
  15. Lagios E, Vassilopoulou S, Sakkas V, Dietrich V, Damiata BN, Ganas A (2007) Testing satellite and ground thermal imaging of low-temperature fumarolic fields: the dormant Nisyros Volcano (Greece). ISPRS J Photogramm Remote Sens 62(6):447–460CrossRefGoogle Scholar
  16. Mouginis-Mark PJ, Francis PW, Friedman T, Garbeil H, Gradie J, Self S, Wilson L, Crisp JA, Glaze L, Jones K, Kahle AB, Pieri DC, Zebker H, Krueger A, Walter L, Wood C, Rose W, Adams J, Wolff R (1991) Analysis of active volcanoes from the earth observing system. Remote Sens Environ 36:1–12CrossRefGoogle Scholar
  17. Patrick M, Dean K, Dehn J (2004) Active mud volcanism observed with Landsat 7 ETM+. J Volcanol Geotherm Res 131(3–4):307–320CrossRefGoogle Scholar
  18. Pergola N, Pietrapertosa C, Lacava T, Tramutoli V (2001) Robust satellite techniques for volcanic eruptions monitoring. Ann Geophys 44(2):167–177Google Scholar
  19. Pergola N, Marchese F, Tramutoli V (2004) Automated detection of thermal features of active volcanoes by means of infrared AVHRR records. Remote Sens Environ 93:311–327CrossRefGoogle Scholar
  20. Pergola N, Marchese F, Tramutoli V, Filizzola C, Ciampa M (2008) Advanced satellite technique for volcanic activity monitoring and early warning. Ann Geophys 51(1):287–301Google Scholar
  21. Pergola N, Giuseppe DA, Lisi M, Marchese F, Mazzeo G, Tramutoli V (2009) Time domain analysis of robust satellite techniques (RST) for near real-time monitoring of active volcanoes and thermal precursor identification. Phys Chem Earth 34:380–385Google Scholar
  22. Pieri D, Abrams M (2004) ASTER watches the world's volcanoes: a new paradigm for volcanological observations from orbit. J Volcanol Geotherm Res 135(1–2):13–28CrossRefGoogle Scholar
  23. Pieri D, Abrams M (2005) ASTER observations of thermal anomalies preceding the April 2003 eruption of Chikurachki volcano, Kurile Islands, Russia. Remote Sens Environ 99(1–2):84–94CrossRefGoogle Scholar
  24. Platnick S, King MD, Ackerman SA, Menzel WP, Baum BA, Riédi JC, Frey RA (2003) The MODIS cloud products: algorithms and examples from Terra. IEEE Trans Geosci Remote Sens 41(2):459–473CrossRefGoogle Scholar
  25. Prins E, Feltz J, Menzel W, Ward D (1998) An overview of GOES-8 diurnal fire and smoke results for SCAR-B and 1995 fire season in South America. J Geophys Res 103(D24):31821–31835CrossRefGoogle Scholar
  26. Roberts G, Wooster M (2008) Fire detection and fire characterization over Africa using Meteosat SEVIRI. IEEE Trans Geosci Remote Sens 46(4 Part 2):1200–1218CrossRefGoogle Scholar
  27. Rothery DA, Thorne MT, Flynn L (2003) MODIS thermal alerts in Britain and the North Sea during the first half of 2001. Int J Remote Sens 24(4):817–826CrossRefGoogle Scholar
  28. Tramutoli V (1998) Robust AVHRR Techniques (RAT) for environmental monitoring theory and applications. In: Checchi G, Zilioli E (eds) Earth surf remote sens II. SPIE, Barcelona, Spain, pp 101–113Google Scholar
  29. Tramutoli V, Di Bello G, Pergola N, Piscitelli S (2001) Robust satellite techniques for remote sensing of seismically active areas. Ann Geophys 44(2):295–312Google Scholar
  30. Trunk L, Bernard A (2008) Investigating crater lake warming using ASTER thermal imagery: case studies at Ruapehu, Po·s, Kawah Ijen, and CopahuÈ Volcanoes. J Volcanol Geotherm Res 178(2):259–270CrossRefGoogle Scholar
  31. Trusdell FA, Moore RB, Sako M, White RA, Koyanagi SK, Chong R, Camacho JT (2005) The 2003 eruption of Anatahan volcano, Commonwealth of the Northern Mariana Islands: chronology, volcanology, and deformation. J Volcanol Geotherm Res 146(1–3):184–207CrossRefGoogle Scholar
  32. Webley P, Wooster M, Strauch W, Saballos J, Dill K, Stephenson P, Stephenson J, Wolf E, Matias O (2008) Experiences from near-real-time satellite-based volcano monitoring in Central America: case studies at Fuego, Guatemala. Int J Remote Sens 29(22):6621–6646CrossRefGoogle Scholar
  33. Wooster MJ (2001) Long-term infrared surveillance of Lascar Volcano: contrasting activity cycles and cooling pyroclastics. Geophys Res Lett 28(5):847–850CrossRefGoogle Scholar
  34. Wooster MJ, Wright R, Blake S, Rothery DA (1997) Cooling mechanisms and an approximate thermal budget for the 1991–1993 Mount Etna lava flow. Geophys Res Lett 24:3277–3280CrossRefGoogle Scholar
  35. Wright R, De La Cruz-Reyna S, Harris AJL, Flynn LP, Gomez-Palacios JJ (2002a) Infrared satellite monitoring at Popocatepetl: explosions, exhalations, and cycles of dome growth. J Geophys Res 107(B8):2153CrossRefGoogle Scholar
  36. Wright R, Flynn L, Garbeil H, Harris A, Pilger E (2002b) Automated volcanic eruption detection using MODIS. Remote Sens Environ 82:135–155CrossRefGoogle Scholar
  37. Wright R, Flynn L, Garbeil H, Harris A, Pilger E (2004) MODVOLC: near-real-time thermal monitoring of global volcanism. J Volcanol Geotherm Res 153:29–49CrossRefGoogle Scholar
  38. Wright R, Carn SA, Flynn LP (2005) A satellite chronology of the May-June 2003 eruption of Anatahan volcano. J Volcanol Geotherm Res 146:102–116CrossRefGoogle Scholar
  39. Xiong X, Wu A, Caos C (2008) On-orbit calibration and inter-comparison of Terra and Aqua MODIS surface temperature spectral bands. Int J Remote Sens 29(17–18):5347–5359CrossRefGoogle Scholar
  40. Xu W, Wooster M, Roberts G, Freeborn P (2010) New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America. Remote Sens Environ 114(9):1876–1895CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Earth and Ecological Science InstituteOronoUSA
  2. 2.Hawaii Institute of Geophysics and PlanetologyUniversity of HawaiiHonoluluUSA

Personalised recommendations