Bulletin of Volcanology

, Volume 73, Issue 5, pp 497–510 | Cite as

New clues on the contribution of Earth’s volcanism to the global mercury cycle

  • E. BagnatoEmail author
  • A. Aiuppa
  • F. Parello
  • P. Allard
  • H. Shinohara
  • M. Liuzzo
  • G. Giudice
Research Article


Active volcanoes are thought to be important contributors to the atmospheric mercury (Hg) budget, and this chemical element is one of the most harmful atmospheric pollutants, owing to its high toxicity and long residence time in ecosystems. There is, however, considerable uncertainty over the magnitude of the global volcanic Hg flux, since the existing data on volcanogenic Hg emissions are sparse and often ambiguous. In an attempt to extend the currently limited dataset on volcanogenic Hg emissions, we summarize the results of Hg flux measurements at seven active open-conduit volcanoes; Stromboli, Asama, Miyakejima, Montserrat, Ambrym, Yasur, and Nyiragongo.. Data from the dome-building Soufriere Hills volcano are also reported. Using our determined mercury to SO2 mass ratios in tandem with the simultaneously-determined SO2 emission rates, we estimate that the 7 volcanoes have Hg emission rates ranging from 0.2 to 18 t yr-1 (corresponding to a total Hg flux of ~41 t·yr-1). Based on our dataset and previous work, we propose that a Hg/SO2 plume ratio ~10-5 is best-representative of gas emissions from quiescent degassing volcanoes. Using this ratio, we infer a global volcanic Hg flux from persistent degassing of ~95 t·yr-1 .


Volcanogenic mercury Mercury Volcanic plume Mercury flux Mercury inventories Atmospheric mercury 



The authors acknowledge M. Edmonds, R. Herd, G. Giuffrida, N. Bobrowski, S. Gurrieri, P. Bani, T. Ohminato, and many others for their support during field work.


  1. Aiuppa A (2009) Degassing of halogens from basaltic volcanism: Insights from volcanic gas observations. Chem Geol 263(1–4):99–109CrossRefGoogle Scholar
  2. Aiuppa A, Federico C, Franco A, Giudice G, Gurrieri S, Inguaggiato S, Liuzzo M, McGonigle AJS, Valenza M (2005) Emission of bromine and iodine from Mount Etna volcano. Geochem Geophys Geosyst 6:Q08008. doi: 10.1029/2005GC000965 CrossRefGoogle Scholar
  3. Aiuppa A, Bagnato E, Witt MLI, Mather TA, Parello F, Pyle DM, Martin RS (2007) Real-time simultaneous detection of volcanic Hg and SO2 at La Fossa Crater, Vulcano (Aeolian Islands, Sicily). Geophys Res Lett 34:L21307. doi: 10.1029/2007GL030762 CrossRefGoogle Scholar
  4. Aiuppa A, Giudice G, Gurrieri S, Liuzzo M, Burton M, Caltabiano T, McGonigle AJS, Salerno G, Shinohara H, Valenza M (2008) Total volatile flux from Mount Etna. Geophys Res Lett 35:L24302. doi: 10.1029/2008GL035871 CrossRefGoogle Scholar
  5. Aiuppa A, Federico C, Giudice G, Giuffrida G, Guida R, Gurrieri S, Liuzzo M, Moretti R, Papale P (2009) The 2007 eruption of Stromboli volcano: Insights from real-time measurement of the volcanic gas plume CO2/SO2 ratio. J Volcanol Geotherm Res 182:221–230. doi: 10.1016/j.jvolgeores.2008.09.013 CrossRefGoogle Scholar
  6. Aiuppa A, Bertagnini A, Métrich N, Moretti R, Di Muro A, Liuzzo M, Tamburello G (2010), A model of degassing for Stromboli volcano, Earth Planet Sci Lett, under review.Google Scholar
  7. Allard P, Aiuppa A, Loyer H, Carrot F, Gaudry A, Pinte G, Michel A, Dongarra G (2000) Acid gas and metal emission rates during long-lived basalt degassing at Stromboli volcano. Geophys Res Lett 27:1207–1210CrossRefGoogle Scholar
  8. Allard P, Aiuppa A, Bani P, Parello F, Shinohara H, Gauthier PJ, Bagnato E, Bertagnini A, Mètrich N (2008) Magmatic Volatile Emissions from Ambrym and Yasur Volcanoes (Vanuatu Arc). IAVCEI 2008, Iceland. Abstract: 35.Google Scholar
  9. AMAP/UNEP (2008) Technical Background Report to the Global Atmospheric Mercury Assessment. Arctic Monitoring and Assessment Programme/UNEP Chemicals Branch (
  10. Andres RJ, Kasgnoc AD (1998) A time-averaged inventory of subaerial volcanic sulfur emissions. J Geophys Res 103:25251–25261CrossRefGoogle Scholar
  11. Aspmo K, Gauchard PA, Steffen A, Temme C, Berg T, Bahlmann E, Banic C, Dommerge A, Ebinghaus R, Ferrari C, Pirrone N, Sprovieri F, Wibetoe G (2005) Measurements of atmospheric mercury species during an international study of mercury depletion event at Ny-Alesund, Svalbard, spring 2003. How reproducible are our present methods? Atmos Environ 39:7607–7619CrossRefGoogle Scholar
  12. Bagnato E (2007) Estimates of Hg emission rates in active volcanic systems. Plinius 33:35–42Google Scholar
  13. Bagnato E, Aiuppa A, Parello F, Calabrese S, D’Alessandro W, Mather TA, McGonigle AJS, Pyle DM, Wängberg I (2007) Degassing of gaseous (elemental and reactive) and particulate mercury from Mount Etna volcano (Southern Italy). Atmos Environ 41:7377–7388. doi: 10.1016/j.atmosenv.2007.05.060 CrossRefGoogle Scholar
  14. Bagnato E, Parello F, Valenza M, Caliro S (2009a) Mercury content and speciation in the Phlegrean Fields volcanic complex: evidences from hydrothermal system and fumaroles. J Volcanol Geother Res 187:250–260CrossRefGoogle Scholar
  15. Bagnato E, Allard P, Parello F, Aiuppa A, Calabrese S, Hammouya G (2009b) Mercury gas emissions from La Soufrière Volcano, Guadeloupe Island (Lesser Antilles). Chem Geol 266:276–282CrossRefGoogle Scholar
  16. Ballantine DS, Finnegan DL, Phelan JM, Zoller WH (1982) Measurement of Hg/S ratios from five volcanoes. EOS Trans Am Geophys Union 63:1152Google Scholar
  17. Bani P, Lardy M (2007) Sulphur dioxide emission rates from Yasur volcano, Vanuatu archipelago. Geophys Res Lett 34:L20309. doi: 10.1029/2007GL030411 CrossRefGoogle Scholar
  18. Bani P, Oppenheimer C, Tsanev VI, Crimp R, Cronin S, Calkins J, Charley D, Lardy M (2009) Surge in sulphur and halogen degassing from Ambrym volcano, Vanuatu. Bull Volcanol 71:1159–1168CrossRefGoogle Scholar
  19. Bertagnini A, Coltelli M, Landi P, Pompilio M, Rosi M (1999) Violent explosions yield new insights into dynamic of Stromboli volcano. EOS Trans AGU 80(52):633–636CrossRefGoogle Scholar
  20. Bichler M, Poljank K, Sortino F (1995) Determination and speciation of minor andtrace elements in volcanic exhalation by NAA. J Radioanal Nucl Chem 92: 183–194.doi: 10.1007/BF02041722 Google Scholar
  21. Buat-Menard P, Arnold M (1978) The heavy metal chemistry of particulate matter emitted by Mount Etna volcano. Geophys Res Lett 5:245–248CrossRefGoogle Scholar
  22. Burton MR, Oppenheimer C, Horrocks LA, Francis PW (2000) Remote sensing of CO2 and H2O emission rates from Masaya volcano, Nicaragua. Geology 28:915–918CrossRefGoogle Scholar
  23. Casadevall TJ, Rose WI, Fuller WH, Hunt WH, Hart MA, Moyers JL, Woods DC, Chuan RL, Friend JP (1984) Sulfur dioxide and particles in quiescent volcanic plumes from Poas, Arenal and Colima volcanos, Costa Rica and Mexico. J Geophys Res 89(D6):9633–9641CrossRefGoogle Scholar
  24. Chakrabarti R, Basu AR, Santo AP, Tedesco D, Vaselli O (2009) Isotopic and geochemical evidence for a heterogeneous mantle plume origin of the Virunga volcanics, Western rift, East African Rift system. Chem Geol 259:273–289. doi: 10.1016/j.chemgeo.2008.11.010 CrossRefGoogle Scholar
  25. EC (European Communities) 2001 Ambient air pollution by mercury (Hg). Position Paper. Prepared by the working group on mercury. Luxembourg: Office for Official Publication of European Communities. http//
  26. Cronin SJ, Sharp DS (2002) Environmental impacts on health from continuous volcanic activity at Yasur (Tanna) and Ambrym, Vanuatu. Int J Environ Health Res 12:109–123CrossRefGoogle Scholar
  27. DeDuerwarder H, Decadt G, Baeyens W (1982) Estimations of mercury fluxes emitted by Mt Etna volcano. Bull Volcanol 45:191–196CrossRefGoogle Scholar
  28. Druitt TH, Kokelaar BP (2002) The Eruption of Soufriere Hills Volcano, Montserrat, from 1995 to 1999. Geol Soc Lond Mem 21:281–306CrossRefGoogle Scholar
  29. Duce RA, Liss PS, Merrill JT, Atlas EL, Buat-Menard P, Hicks BB, Miller JM, Prospero JM, Arimoto R, Church TM, Ellis W, Galloway JN, Hansen L, Jickells TD, Knap AH, Reinhardt KH, Schneider B, Soudine A, Tokos JJ, Tsunogai S, Wollast R, Zhou M (1991) The atmospheric input of trace species to the world ocean. Glob Biogeochem Cycles 5:193–259CrossRefGoogle Scholar
  30. Ebinghaus R, Jennings SG, Schroeder WH, Berg T, Donaghy T, Guentzel J, Kenny C, Kock HH, Kvietkus K, Landing W, Muhleck T, Munthe J, Prestbo EM, Schneeberger D, Slemr F, Sommar J, Urba A, Wallschlager D, Xiao Z (1999) International field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland. Atmos Environ 33:3063–3073CrossRefGoogle Scholar
  31. Edmonds M, Aiuppa A, Humphreys M, Moretti R, Giudice G, Martin RS, Herd RA, Christopher T (2010) Excess volatiles supplied by mingling of mafic magma at an andesite arc volcano, Geochem Geophys Geosyst. doi: 10.1029/2009GC002781, in press
  32. Engle MA, Gustin MS, Goff F, Counce DA, Janik CJ, Bergfeld D, Rytuba JJ (2006) Atmospheric mercury emissions from substrates and fumaroles associated with three hydrothermal systems in the western United States. J Geophys Res 111: D17304. doi: 10.1029/2005JD006563
  33. Ferrara R, Maserti B, Anderson M, Edner H, Ragnarson P, Svanberg S, Hernandez A (1998) Atmospheric mercury concentrations and fluxes in the Almaden Mining District (Spain). Atmos Environ 32:3897–39904CrossRefGoogle Scholar
  34. Ferrara R, Mazzolai B, Lanzillotta E, Nucaro E, Pirrone N (2000) Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin. Sci Total Environ 259:115–121CrossRefGoogle Scholar
  35. Fitzgerald WF, Lamborg CH (2003) Geochemistry of mercury in the environment. In: Sherwood Lollar, B. (Ed.), Treatise on Geochemistry 9: 107–148Google Scholar
  36. Fitzgerald WF, Engstrom DR, Mason RP, Nater EA (1998) The case for atmospheric mercury contamination in remote areas. Env Sci Tech 32:1–7CrossRefGoogle Scholar
  37. Fulignati P, Sbrana A, Clocchiatti R, Luperini W (2006) Environmental impact of the acid fumarolic plume of a passively degassing volcano (Vulcano Island, Italy). Environ Geol 49:1139–1155CrossRefGoogle Scholar
  38. Galle B, Oppenheimer C, Geyer A, McGonigle AJS, Edmonds M, Horrocks LA (2003) A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance. J Volcanol Geotherm Res 119:241–254CrossRefGoogle Scholar
  39. Gerlach TM, Graeber EG (1985) Volatile budget of Kilauea volcano. Nature 313:273–277. doi: 10.1038/313273a0 CrossRefGoogle Scholar
  40. Gildemeister AE, Graney J, Keeler GJ (2005) Source proximity reflected in spatial and temporal variability in particle and vapor phase Hg concentrations in Detroit, MI. Atmos Environ 39(2):353–358CrossRefGoogle Scholar
  41. Gustin MS, Lindberg SE, Marsik F, Casimir A, Abinghaus R, Edwards G, Fitzgerald C, Kemp R, Kock H, Leonard T, Lindon J, Majewski M, Montecnos C, Owens J, Pilote M, Poissant L, Rasmussen P, Schaedlich F, Scneeberger D, Schroeder W, Sommar J, Turner R, Vette A, Wallschlaeger D, Xiao Z, Zhang H (1999) Nevada SToRMS project: measurement of mercury emissions from naturally enriched surfaces. J Geophys Res 104(D17):21831–21844CrossRefGoogle Scholar
  42. Hall B (1995) The gas phase oxidation of elemental mercury by ozone. Water Air Soil Pollut 80:301–315CrossRefGoogle Scholar
  43. Hinkley TK, Lamothe PJ, Wilson SA, Finnegan DL, Gerlach TM (1999) Metal emissions from Kilauea, and a suggested revision of the estimated worldwide metal output by quiescent degassing of volcanoes. Earth Planet Sci Lett 170:315–325CrossRefGoogle Scholar
  44. Hylander LD, Meili M (2003) 500 years of mercury production: global annual inventory by region until 2000 and associated emissions. Sci Total Environ 304:13–27CrossRefGoogle Scholar
  45. Kagesawa H, Shuto T, Mori T, Hirabayashi J, Oikawa M, Onizawa S, Kazahaya K, Ohwada M (2005) Sulfur dioxide discharge rate monitoring of Mt Asama 2004 eruption. Abstract, Japan Earth Planet Sci Joint Meeting, Makuhari, JapanGoogle Scholar
  46. Kazahaya K, Shinohara H, Uto K, Odai M, Nakahori Y, Mori H, Iino H, Miyashita M, Hirabayashi J (2004) Gigantic SO2 emission from Myake-jima volcano, Japan, caused by caldera collapse. Geology 32(5):425–428. doi: 10.1130/G220399.1 CrossRefGoogle Scholar
  47. Khalil MAK, Rasmussen RA (1994) Global decrease in atmospheric carbon monoxide concentration. Nature 370:639–641CrossRefGoogle Scholar
  48. Komorowski JC, Tedesco D, Kasereka M, Allard P, Papale P, Vaselli O, Durieux J, Baxter P, Halbwachs M, Akumbe M, Baluku B, Briole P, Ciraba M, Dupin J-C, Etoy O, Garcin D, Hamaguchi H, Houlié N, Kavotha KS, Lemarchand A, Lockwood J, Lukaya N, Mavonga G, de Michele M, Mpore S, Mukambilwa K, Munyololo F, Newhall C, Ruch J, Yalire M, Wafula M (2004) The January 2002 flank eruption of Nyiragongo volcano (Democratic Republic of Congo): Chronology, evidence for a tectonic rift trigger, and impact of lava flows on the city of Goma. Acta Vulcanol 14(15):27–62Google Scholar
  49. Kyle PR, Meeker M, Finnegan D (1990) Emission rates of sulfur dioxide, trace gases and metals from Mount Erebus, Antarctica. Geophys Res Lett 17:2125–2128CrossRefGoogle Scholar
  50. Le Guern F (1987) Mechanisms of Energy transfer in the lava lake of Niyragongo (Zaire). J Volcanol Geother Res 31:17–31CrossRefGoogle Scholar
  51. Lin CJ, Pehkonen SO (1998a) Two-phase model of mercury chemistry in the atmosphere. Atmos Environ 32:2543–2558CrossRefGoogle Scholar
  52. Lin CJ, Pehkonen SO (1998b) Oxidation of elemental mercury by aqueous chlorine (HOC1/HOCL-): implications for throposphere mercury chemistry. J Geophys Res 103 (D21): 28093–28102Google Scholar
  53. Lin CJ, Pehkonen SO (1999) The chemistry of atmospheric mercury: a review. Atmos Environ 33:2067–2079CrossRefGoogle Scholar
  54. Lindberg SE, Stratton WJ (1998) Atmospheric mercury speciation: Concentrations and behavior of reactive gaseous mercury in ambient air. Env Sci Tech 32:49–57CrossRefGoogle Scholar
  55. Lindqvist O, Rodhe H (1985) Atmospheric mercury—A review. Tellus Ser B 37:136–159CrossRefGoogle Scholar
  56. Lindqvist O, Johansson K, Aastrup M, Andersson A, Bringmark L, Hovsenius G, Hakanson L, Iverfeldt A, Meili M, Timm B (1991) Mercury in the Swedish environment- recent research on causes, consequences and corrective methods, special issue. Water Air Soil Pollut 55:1–261CrossRefGoogle Scholar
  57. Liu SL, Nadim F, Perkins C, Carley RJ, Hoag GE, Lin YH, Chen LT (2002) Atmospheric mercury monitoring survey in Beijing, China. Chemosphere 48(1):97–107CrossRefGoogle Scholar
  58. Martin RS, Mather TA, Pyle DM (2006) High-temperature mixtures of magmatic and atmospheric gases. Geochem Geophys Geosyst 7:Q04006. doi: 10.1029/2005GC001186 CrossRefGoogle Scholar
  59. Mason RP, Fitzgerald WF, Morel FMM (1994) The biogeochemical cycling of elemental mercury: Anthropogenic influences. Geochim Cosmochim Acta 58(15):3191–3198. doi: 10.1016/0016-7037(94)90046-9 CrossRefGoogle Scholar
  60. Mather TA, Pyle DM, Oppenheimer C (2003) Tropospheric Volcanic Aerosol, in Volcanism and the Earth's atmosphere, edited by A. Robock and C. Oppenheimer, 189–212, Geophys Monograph 139, American Geophysical Union, Washington, DC.Google Scholar
  61. McGonigle AJS, Oppenheimer C, Galle B, Mather TA, Pyle DM (2002) Walking traverse and scanning DOAs measurements of volcanic gas emission rates. Geophys Res Lett 29(20):1985. doi: 10.1029/2002GL015827 CrossRefGoogle Scholar
  62. Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29:543–566CrossRefGoogle Scholar
  63. Munthe J, Wangberg I, Pirrone N, Iverfeld A, Ferrara R, Ebinghaus R, Feng X, Gardfelt K, Keeler G, Lanzillotta E, Lindberg SE, Lu J, Mamane Y, Prestbo E, Schmolke S, Schroeder WH, Sommar J, Sprovieri F, Stevens RK, Stratton W, Tuncel G, Urba A (2001) Intercomparison of methods for sampling and analysis of atmospheric mercury species. Atmos Environ 35:3007–3017CrossRefGoogle Scholar
  64. Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49CrossRefGoogle Scholar
  65. Nriagu J, Becker C (2003) Volcanic emissions of mercury to the atmosphere: global and regional inventories. Sci Tot Env 304:3–12CrossRefGoogle Scholar
  66. Oppenheimer C (2003) Volcanic degassing. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry. Elsevier-Pergamon, Oxford, pp 123–166CrossRefGoogle Scholar
  67. Oppenheimer C, Kyle PR (2008) Probing the magma plumbing of Erebus volcano, Antarctica, by open-path FTIR spectroscopy of gas emissions. J Volc Geotherm Res 177(3):743–754CrossRefGoogle Scholar
  68. Pacyna JM (1996) Emission inventories of atmospheric mercury from anthropogenic sources. In Beayens W., Ebinghaus R., Vasiliev O (eds) Global and regional mercury cycle: sources, fluxes and mass balances. NATO-ASI Series 2. Environment vol. 21. Kluwer, Dordrech, The Netherlands, 161–178Google Scholar
  69. Pacyna EG, Pacyna JM, Steenhuisen F, Wilson S (2006) Global anthropogenic mercury emission inventory for 2000. Atmos Environ 40(22):4048–4063CrossRefGoogle Scholar
  70. Phelan JM, Finnegan DL, Ballantine DS, Zoller WH (1982) Airborne aerosol measurements in the quiescent plume of Mount St Helens: September, 1980. Geophys Res Lett 9:1093–1096CrossRefGoogle Scholar
  71. Pirrone N, Mason R (2009) Mercury Fate and Transport in the Global Atmosphere: Emissions, Measurements and Models, United Nation Environment Program (UNEP), A report of the UNEP-Global Partnership on Atmospheric Mercury Transport and Fate Research, Geneva, Springer, USA: 637Google Scholar
  72. Pirrone N, Keeler GJ, Nriagu JO (1996) Regional differences in worldwide emissions of mercury to the atmosphere. Atmos Environ 30:2981–2987CrossRefGoogle Scholar
  73. Porcella DB, Ramel C, Jernelov A (1997) Global mercury pollution and the role of gold mining: an overview. Water Air Soil Poll 97:205–207Google Scholar
  74. Pyle DM, Mather TA (2003) The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos Environ 3:5115–5124CrossRefGoogle Scholar
  75. Rasmussen PE, Edwards GC, Kemp JR, Fitzgerald-Hubble CR, Schroeder WH (1998) Towards an improved natural sources inventory for mercury. In: Skeaff J, editor. Proceedings on the Metals in the Environment: An International Symposium: 74–82.Google Scholar
  76. Ripepe M, Delle Donne D, Lacanna G, Marchetti E, Ulivieri G (2009) The onset of the 2007 eruption of Stromboli volcano. J Volcanol Geotherm Res 182:131–136CrossRefGoogle Scholar
  77. Robin C, Eissen JP, Monzier M (1993) Giant tuff cone and 12-km-wide associated caldera at Ambrym Volcano (Vanuatu, New Hebrides Arc). J Volc Geotherm Res 55:225–238CrossRefGoogle Scholar
  78. Rosi M, Bertagnini A, Landi P (2000) Onset of the persistent activity at Stromboli volcano (Italy). Bull Volcanol 62:294–300CrossRefGoogle Scholar
  79. Rutter AP, Snyder DC, Stone EA, Schauer JJ, Gonzalez-Abraham R, Molina LT, Marquez C, Cardenas B, de Foy B (2009) In situ measurements of speciated atmospheric mercury and the identification of source regions in the Mexico City Metropolitan Area. Atmos Chem Phys 9(1):207–220CrossRefGoogle Scholar
  80. Ryaboshapko A, Bullock R, Ebinghaus R, Ilyin I, Lohman K, Munthe J, Petersen G, Seigneur C, Wängberg I (2002) Comparison of mercury chemistry models. Atmos Environ 36:3881–3898CrossRefGoogle Scholar
  81. Sawyer GM, Carn SA, Tsanev VI, Oppenheimer C, Burton M (2008) Investigation into magma degassing at Nyiragongo volcano. Democratic Republic of the Congo. Geochem Geophys Geosyst 9:Q02017. doi: 10.1029/2007GC001829 CrossRefGoogle Scholar
  82. Schroeder WH, Munthe J (1998) Atmospheric mercury—An overview. Atmos Environ 32:809–822CrossRefGoogle Scholar
  83. Schroeder WH, Keeler G, Kock H, Roussel P, Scneeberger D, Schaedlich F (1995) International field intercomparison of atmospheric mercury measurement methods. Water Air Soil Pollut 80:611–620CrossRefGoogle Scholar
  84. Selin NE, Jacob DJ, Park RJ, Yantosca RM, Strode S, Jaegle L, Jaffe D (2007) Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. J Geophys Res 112:D02308. doi: 10.1029/2006JD007450 CrossRefGoogle Scholar
  85. Shinohara H. (2006) Near Vent Volcanic Plume Measurement by a Portable Multi-Gas-Sensor System to Estimate Volcanic Gas Composition. Eos Trans. AGU, 87(52), Fall Meet Suppl, Abstract V43E-01Google Scholar
  86. Shinohara H. (2008) Excess degassing from volcanoes and its role on eruptive and intrusive activity. Rev Geophys 46, RG4005, doi: 10.1029/2007RG000244
  87. Shinohara H, Witter JB (2005) Volcanic gases emitted during mild Strombolian activity of Villarica volcano Chile. Geophys Res Lett 32:L20308. doi: 10.1029/2005GL024131 CrossRefGoogle Scholar
  88. Shinohara H, Kazahaya K, Saito G, Fukui K, Odai M (2003) Variation of CO2, SO2 ratio in volcanic plumes of Miyakejima: Stable degassing deduced from heliborne measurements. Geophys Res Lett 30(5):1208. doi: 10.1029/2002GL016105 CrossRefGoogle Scholar
  89. Shinohara H, Aiuppa A, Giudice G, Gurrieri S, Liuzzo M (2008) Variation of H2O, CO2, SO2 ratios of volcanic gases discharged by continuous degassing of Mount Etna volcano Italy. J Geophys Res 113:B09203. doi: 10.1029/2007JB005185 CrossRefGoogle Scholar
  90. Shinohara H., Saito G, Morishita Y (2009) Degassing of CO2-H2O from Miyakejima Volcano: Insights from Melt Inclusion Compositions and Volcanic Gas Emissions. Eos Trans. AGU, 90(52), Fall Meet Suppl, Abstract V23H-07Google Scholar
  91. Siegel SM, Siegel BZ (1984) First estimate of annual mercury flux at the Kilauea main vent. Nature 309:146–147CrossRefGoogle Scholar
  92. Slemr F, Schuster G, Seiler W (1985) Distribution, speciation, and budget of atmospheric mercury. J Atmos Chem 3:407–434CrossRefGoogle Scholar
  93. Sommar L, Hallquist M, Ljungstrom E, Lindqvist O (1997) On the gaseous reaction between volatile mercury species and the nitrate radical. J Atmos Chem 27:233–247CrossRefGoogle Scholar
  94. Sommar L, Gardfeldt K, Stromberg D, Feng X (2001) A kinetic study of the as-phase reaction between hydroxylradical and atomic mercury. Atmos Environ 35:3049–3054CrossRefGoogle Scholar
  95. Streets DG, Zhang Q, Wu Y (2009) Projection of global mercury emissions in 2050. Environ Sci Technol 43:2983–2988CrossRefGoogle Scholar
  96. Symonds R, Rose WI, Bluth GJS, Gerlach TM (1994) Volcanic-gas studies: methods, results and applications, in: M.R. Carroll, J.R. Halloway (Eds.), Volatiles in Magmas. Rev Mineral 30: 1–66, 1994Google Scholar
  97. Tokos JJ, Calhoun JA, Prestbo EM (1998) Homogeneous gas-phase reaction of Hg0 with H2O2, O3, CH3I, and (CH3)2 S: implications for atmospheric Hg cycle. Atmos Environ 32:823–827CrossRefGoogle Scholar
  98. U.S. E.P.A. (1997) Mercury Study Report to congress, EPA-452/R-97-003”, Office of Air Quality Planning and Standards, Office of Reserch and Development, US Government Printing Office, Washington, DC, DecemberGoogle Scholar
  99. U.S. E.P.A. (1999) Method IO-5: Sampling and Analysis for Atmospheric Mercury. Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air. Center for Environmental Research Information Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268Google Scholar
  100. Varekamp JC, Buseck PR (1981) Mercury emissions from Mount St Helens during September 1980. Nature 293:555–556CrossRefGoogle Scholar
  101. Varekamp JC, Buseck PR (1986) Global mercury flux from volcanic and geothermal sources. Appl Geochem 1:65–73CrossRefGoogle Scholar
  102. Varrica D, Aiuppa A, Dongarrà G (2000) Volcanic and anthropogenic contribution to heavy metal content in lichens from Mt. Etna and Vulcano island (Sicily). Environ Pollut 108:153–162CrossRefGoogle Scholar
  103. von Glasow R (2010) Atmospheric chemistry in volcanic plumes. PNAS 107(15):6594–6599CrossRefGoogle Scholar
  104. Watt SFL, Pyle DM, Mather TA, Day JA, Aiuppa A (2007) The use of tree rings and foliage as an archive of volcanogenic cation deposition. Environ Pollut 148:48–61CrossRefGoogle Scholar
  105. Weissberg BG, Rodhe AG (1978) Mercury in some New Zealand geothermal discharges. N Z J Sci 21:365–369Google Scholar
  106. Wilson SJ, Steenhuisen F, Pacyna JM, Pacyna EG (2006) Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories. Atmos Environ 40(24):4621–4632CrossRefGoogle Scholar
  107. Witt MLI, Mather TA, Pyle DM, Aiuppa A, Bagnato E, Tsanev VI (2008a) Mercury and halogen emissions from Masaya and Telica volcanoes Nicaragua. J Geophys Res 113:B06203. doi: 10.1029/2007JB005401 CrossRefGoogle Scholar
  108. Witt MLI, Fischer TP, Pyle DM, Yang TF, Zellmer GF (2008b) Fumarole compositions and mercury emissions from the Tatun Volcanic field, Taiwan: Results from multi-component gas analyser, portable mercury spectrometer and direct sampling techniques. J Volcanol Geotherm Res 178:636–643CrossRefGoogle Scholar
  109. Xiao ZF, Munthe J, Stromberg D, Lindqvist O (1994) Photochemical behaviour inorganic Hg compounds in aqueous solution. In: Watras CJ, Huckabee JW (eds.) Mercury as a Global Pollutant- Integration and Synthesis. Lewis Publishers: 581–592Google Scholar
  110. Yoshimoto M, Koyama E, Hirabayashi J, Nakada S (2005) The 2004 eruption of Asama volcano, Central Japan. Bull Volcanol Soc Jpn 50:417–420Google Scholar
  111. Zambardi T, Sonke JE, Toutain JP, Sortino F, Shinohara H (2009) Mercury emissions and stable isotopic compositions at Vulcano Island (Italy). Earth Planet Sci Lett 277:236–243. doi: 10.1016/j.epsl.2008.10.023 CrossRefGoogle Scholar
  112. Zimmer MM, Fisher TP, Hilton DR, Alvarado GE, Sharp ZD, Walker JA (2004) Nitrogen systematics and gas fluxes of subduction zones: insights from Costa Rica arc volatiles. Geochem Geophys Geosyst 5, Q05J11. doi: 10.1029/2003GC000651

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • E. Bagnato
    • 1
    Email author
  • A. Aiuppa
    • 1
    • 2
  • F. Parello
    • 1
  • P. Allard
    • 3
  • H. Shinohara
    • 4
  • M. Liuzzo
    • 2
  • G. Giudice
    • 2
  1. 1.Dipt. C.F.T.A.University of PalermoPalermoItaly
  2. 2.INGVPalermoItaly
  3. 3.Sciences de la Terre, CNRS- CEAGif/YvetteFrance
  4. 4.AIST, Geological Survey of JapanTsukubaJapan

Personalised recommendations