Advertisement

Bulletin of Volcanology

, Volume 72, Issue 9, pp 1039–1059 | Cite as

Evaluating long-range volcanic ash hazard using supercomputing facilities: application to Somma-Vesuvius (Italy), and consequences for civil aviation over the Central Mediterranean Area

Research Article

Abstract

Volcanic ash causes multiple hazards. One hazard of increasing importance is the threat posed to civil aviation, which occurs over proximal to long-range distances. Ash fallout disrupts airport operations, while the presence of airborne ash at low altitudes near airports affects visibility and the safety of landing and take-off operations. Low concentrations of ash at airplane cruise levels are sufficient to force re-routing of in-flight aircrafts. Volcanic fallout deposits spanning large distances have been recognized from the Somma-Vesuvius volcano for several Holocene explosive eruptions. Here we develop hazard and isochron maps for distal ash fallout from the Somma-Vesuvius, as well as hazard maps for critical ash concentrations at relevant flight levels. Maps are computed by coupling a meteorological model with a fully numeric tephra dispersal model that can account for ash aggregation processes, which are relevant to the dispersion dynamics of fine ash. The simulations were carried out using supercomputing facilities, spanning on entire meteorological year that is statistically representative of the local meteorology during the last few decades. Seasonal influences are also analyzed. The eruptive scenario is based on a Subplinian I-type eruption, which is within the range of the maximum expected event for this volcano. Results allow us to quantify the impact that an event of this magnitude and intensity would have on the main airports and aerial corridors of the Central Mediterranean Area.

Keywords

Ash fallout Aerial navigation safety Hazard maps Somma-Vesuvius Supercomputer 

Notes

Acknowledgements

This work has been partially funded by the “Ramón y Cajal” Spanish scientific program. R. Sulpizio carried out this work under the HPC-Europa ++ project (RII3-CT-2003-506079), with the support of the European Community—Research Infrastructure Action under the FP6 “Structuring the European Research Area” Programme). Simulations have been done at the BSC-CNS supercomputing facilities (Barcelona, Spain) using the MareNostrum computer. Suggestions of Alain Volentik and an anonymous reviewer improved the manuscript. We thank Russel Drysdale for the editing of the English text. P. Dellino and D. Mele are acknowledged for their helpful assistance in calculating particle characteristics.

References

  1. Barberi F, Macedonio G, Pareschi MT, Santacroce R (1990) Mapping the tephra fallout risk: an example from Vesuvius (Italy). Nature 344:142–144CrossRefGoogle Scholar
  2. Barberi F, Ghigliotti M, Macedonio G, Orellana H, Pareschi MT, Rosi M (1992) Volcanic hazard assessment of Guagua Pichincha (Ecuador) based on past behaviour and numerical models. J Volcanol Geotherm Res 49:53–68CrossRefGoogle Scholar
  3. Bertagnini A, Landi P, Rosi M, Vigliargio A (1998) The Pomici di Base Plinian eruption of Somma Vesuvius. J Volcanol Geotherm Res 83:219–239CrossRefGoogle Scholar
  4. Blong RJ (1984) Volcanic hazards. A sourcebook on the effects of eruptions. Academic, SidneyGoogle Scholar
  5. Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456CrossRefGoogle Scholar
  6. Bonadonna C, Connor CB, Houghton BF, Connor L, Byrne M, Laing A, Hincks T (2005) Probabilistic modeling of tephra dispersion: hazard assessment of a multi-phase eruption at Tarawera, New Zealand. J Geophys Res 110:B03203. doi: 10.1029/2003JB002896 CrossRefGoogle Scholar
  7. Bursik M (2001) Effect of wind on the rise height of volcanic plumes. Geophys Res Lett 18:3621–3624CrossRefGoogle Scholar
  8. Büttner R, Dellino P, Raue H, Sonder I, Zimanowski B (2006) Stress induced brittle fragmentation of magmatic melts: theory and experiments. J Geophys Res 111:B08204. doi: 101029/2005JB003958 CrossRefGoogle Scholar
  9. Carazzo G, Kaminski E, Tait S (2006) The route to self-similarity in turbulent jets and plumes. J Fluid Mech 547:137–148CrossRefGoogle Scholar
  10. Carazzo G, Kaminski E, Tait S (2008) On the dynamics of volcanic columns: a comparison of field data with new model of negatively buoyant jets. J Volcanol Geotherm Res 178:94–103CrossRefGoogle Scholar
  11. Carey S, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St-Helens volcano. J Geophys Res 87:7061–7072CrossRefGoogle Scholar
  12. Casadevall TJ (1993) Volcanic hazards and aviation safety, lessons of the past decade. FAA Aviat Saf J 2:1–11Google Scholar
  13. Casadevall TJ (ed) (1994) Volcanic ash and aviation safety. Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety. US Geol Surv Bull 2047, p 1–418Google Scholar
  14. Casadevall TJ, PJ De losReyes, Schneider DJ (1996) The 1991 Pinatubo eruptions and their effects on aircraft operations. In: Newhall CG, Punongbayan RS (eds) Fire and mud-eruptions and lahars of Mount Pinatubo, Philippines. University of Washington Press, Seattle, pp 1071–1085Google Scholar
  15. Cioni R, Santacroce R, Sbrana A (1999) Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma–Vesuvius caldera. Bull Volcanol 60:207–222CrossRefGoogle Scholar
  16. Cioni R, Levi S, Sulpizio R (2000) Apulian Bronze Age pottery as a long distance indicator of the Avellino Pumice eruption (Vesuvius, Italy). In: McGuire WG et al (eds) The archaeology of geological catastrophes. Geol Soc London Spec Pub, vol 171, pp 159–177Google Scholar
  17. Cioni R, Longo A, Macedonio G, Santacroce R, Sbrana A, Sulpizio R, Andronico D (2003a) Assessing pyroclastic fall hazard through field data and numerical simulations: example from Vesuvius. J Geophys Res 108:2063. doi: 10.1029/2002JB002251 CrossRefGoogle Scholar
  18. Cioni R, Sulpizio R, Garruccio N (2003b) Variability of the eruption dynamics during a Subplinian event: the Greenish Pumice eruption of Somma-Vesuvius (Italy). J Volcanol Geotherm Res 124:89–114CrossRefGoogle Scholar
  19. Cioni R, Bertagnini A, Santacroce R, Andronico D (2008) Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new classification scheme. J Volcanol Geotherm Res 178:331–346. doi: 10.1016/j.jvolgeores.2008.04.024 CrossRefGoogle Scholar
  20. Costa A, Macedonio G, Folch A (2006) A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet Sci Lett 241:634–647CrossRefGoogle Scholar
  21. Costa A, Dell’Erba F, Di Vito MA, Isaia R, Macedonio G, Orsi G, Pfeiffer T (2009) Tephra fallout Hazard at the Campi Flegrei caldera (Italy). Bull Volcanol 71:259–273CrossRefGoogle Scholar
  22. Costa A, Folch A, Macedonio G (2010) An aggregation model for ash particles in volcanic plumes and clouds: I. Theoretical formulation. J Geophys Res (in press)Google Scholar
  23. De La Fuente Layos L (2009) Air passenger transport in Europe in 2007. EUROSTAT, Statistics in Focus 1–2009, pp 1–12Google Scholar
  24. Dellino P, Mele D, Bonasia R, Braia G, La Volpe L, Sulpizio R (2005) The aerodynamics of pumice. Geophys Res Lett 32:L21306. doi: 10.1029/2005GL023954 CrossRefGoogle Scholar
  25. Dellino P, Mele D, Sulpizio R, La Volpe L, Braia G (2008) A method for the calculation of the impact parameters of dilute pyroclastic density currents based on deposit particle characteristics. J Geophys Res 113:B07206. doi: 10.1029/2007JB005365 CrossRefGoogle Scholar
  26. DPC (1995) Pianificazione nazionale d’emergenza dell’area vesuviana. Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri, Rome (in Italian)Google Scholar
  27. DPC (2001) Proposta di aggiornamento della pianificazione nazionale d’emergenza dell’area vesuviana. Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri, Rome (in Italian)Google Scholar
  28. Durant AJ, Rose WI, Sarna-Wojcicki AM, Carey S, Volentik ACM (2009) Hydrometeor-enhanced tephra sedimentation: constraints from the 18 May 1980 eruption of Mount St. Helens. J Geophys Res 114:B03204. doi: 10.1029/2008JB005756 CrossRefGoogle Scholar
  29. Esposti Ongaro T, Neri A, Todesco M, Macedonio G (2002) Pyroclastic flow hazard assessment at Vesuvius (Italy) by using numerical modelling. 2. Analysis of flow variable. Bull Volcanol 64:178–191CrossRefGoogle Scholar
  30. Favalli M, Pareschi MT, Zanchetta G (2006) Simulation of syn-eruptive floods in the circumvesuvian plain (Southern Italy). Bull Volcanol 6:349–362CrossRefGoogle Scholar
  31. Folch A, Jorba O, Viramonte J (2008) Volcanic ash forecast—application to the May 2008 Chaitén eruption. Nat Haz Earth Syst Sci 8:927–940CrossRefGoogle Scholar
  32. Folch A, Costa A, Macedonio G (2009) FALL3D: a computational model for volcanic ash transport and deposition. Comput Geosci 35(6):1334–1342CrossRefGoogle Scholar
  33. Folch A, Costa A, Durant A, Macedonio G (2010) An aggregation model for ash particles in volcanic plumes and clouds: II. Model application. J Geophys Res (in press)Google Scholar
  34. Ganser H (1993) A rational approach to drag prediction of spherical and non spherical particles. Powder Technol 77:143–152CrossRefGoogle Scholar
  35. Guffanti M, Mayberry GC, Casadevall TJ, Wunderman R (2009) Volcanic hazards to airports. Nat Haz 51:287–302CrossRefGoogle Scholar
  36. Gurioli L, Houghton B, Cashman K, Cioni R (2005) Complex changes in eruption dynamics and the transition between Plinian and phreatomagmatic activity during the 79 AD eruption of Vesuvius. Bull Volcanol 67:144–159CrossRefGoogle Scholar
  37. Gurioli L, Sulpizio R, Cioni R, Sbrana R, Santacroce R, Luperini W, Andronico D (2010) Pyroclastic flow hazard assessment at Somma-Vesuvius: the relevance of geological data. Bull Volcanol (in press)Google Scholar
  38. Haeckel M, van Beusekom J, Wiesner MG, Konig I (2001) The impact of the 1991 Mount Pinatubo tephra fallout on the geochemical environment of the deep-sea sediments in the South China Sea. Earth Planet Sci Lett 193:151–166CrossRefGoogle Scholar
  39. Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69:1–24CrossRefGoogle Scholar
  40. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  41. Macedonio G, Pareschi MT, Santacroce R (1988) A numerical simulation of the Plinian fall phase of the 79 AD eruption of Vesuvius. J Geophys Res 93:14817–14827CrossRefGoogle Scholar
  42. Macedonio G, Costa A, Longo A (2005) A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput Geosci 31:837–845CrossRefGoogle Scholar
  43. Macedonio G, Costa A, Folch A (2008) Ash fallout scenarios at Vesuvius: numerical simulations and implications for hazard assessment. J Volcanol Geotherm Res 178:366–377CrossRefGoogle Scholar
  44. Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res 109:B11201. doi: 10.1029/2004JB003155 CrossRefGoogle Scholar
  45. Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186:10–21CrossRefGoogle Scholar
  46. Mele D, Dellino P, Bonasia R, Braia G, La Volpe L, Sulpizio R (2009) The influence of aerodynamic parameters on the dispersal behaviour of volcanic ash. Proceedings of the meeting Geoitalia 2009: abstract volume, 176–177Google Scholar
  47. Mele D, Sulpizio R, Dellino P, La Volpe L (2010) Stratigraphy and eruptive dynamics of a long-lasting Plinian eruption of Somma-Vesuvius: the Pomici di Mercato (8900 years B.P.). Bull Volcanol acceptedGoogle Scholar
  48. Michalakes J, Dudhia J, Gill D, Henderson T, Klemp J, Skamarock W, Wang W (2005) The weather research and forecasting model: software architecture and performance. In: Zwiefhofer W, Mozdzynski G (eds) Proceedings of the eleventh ECMWF workshop on the use of high performance computing in meteorology. World ScientificGoogle Scholar
  49. Miller TP, Casadevall TJ (2000) Volcanic ash hazards to aviation. In: Sigurdsson H, Houghton B, McNutt S, Rymes H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 915–930Google Scholar
  50. Neri A, Aspinall WP, Cioni R, Bertagnini A, Baxter PJ, Zuccaro G, Andronico D, Barsotti S, Cole PD, Esposti Ongaro T, Hincks TK, Macedonio G, Papale P, Rosi M, Santacroce R, Woo G (2008) Developing an event tree for probabilistic hazard and risk assessment at Vesuvius. J Volcanol Geotherm Res 178:397–415. doi: 10.1016/j.jvolgeores.2008.05.014 CrossRefGoogle Scholar
  51. Papp KR, Dean KG, Dehn J (2005) Predicting regions susceptible to high concentrations of airborne volcanic ash in the North Pacific region. J Volcanol Geotherm Res 148:295–314CrossRefGoogle Scholar
  52. Parfitt EA (1998) A study of clast size distribution, ash deposition and fragmentation in a Hawaiian-style volcanic eruption. J Volcanol Geotherm Res 84:197–208CrossRefGoogle Scholar
  53. Pielke R, Cotton W, Walko R, Tremback C, Nicholls M, Moran M, Wesley D, Lee T, Copeland J (1992) A comprehensive meteorological modeling system-RAMS. Meteorol Atmos Phys 49:69–91CrossRefGoogle Scholar
  54. Rolandi G, Maraffi S, Petrosino P, Lirer L (1993) The Ottaviano eruption of Somma-Vesuvius (8000 years BP): a magmatic alternating fall and flow-forming eruption. J Volcanol Geotherm Res 58:43–65CrossRefGoogle Scholar
  55. Rosi M, Principe C, Vecci R (1993) The 1631 eruption of Vesuvius reconstructed from the review of chronicles and study of deposits. J Volcanol Geotherm Res 58:151–182CrossRefGoogle Scholar
  56. Santacroce R (1987) Somma Vesuvius. Quad Ric Sci 17:1–251Google Scholar
  57. Santacroce R, Cioni R, Marianelli P, Sbrana A, Sulpizio R, Zanchetta G, Donahue DJ, Joron JL (2008) Age and whole rock-glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: a review as a tool for distal tephrostratigraphy. J Volcanol Geotherm Res 177:1–18. doi: 10.1016/j.jvolgeores.2008.06.009 CrossRefGoogle Scholar
  58. Sigurdsson H, Carey S, Cornell W, Pescatore T (1985) The eruption of Vesuvius in AD 79. Natl Geogr Res 1:332–387Google Scholar
  59. Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Wang W, Powers J (2005) A description of the Advanced Research WRF Version 2, Tech note tn-468+str, NCAR, available at http: //www.wrf-model.org
  60. Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of the 1875 eruption of Askja, Iceland. Philos Trans R Soc Lond, A 229:241–273CrossRefGoogle Scholar
  61. Stewart C, Johnston DM, Leonard GS, Horwell CJ, Thordarson T, Cronin SJ (2006) Contamination of water supplies by volcanic ashfall: a literature review and simple impact modeling. J Volcanol Geotherm Res 158:296–306CrossRefGoogle Scholar
  62. Sulpizio R, Mele D, Dellino P, La Volpe L (2005) A complex, SubPlinian-type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy. Bull Volcanol 67:743–767CrossRefGoogle Scholar
  63. Sulpizio R, Mele D, Dellino P, La Volpe L (2007) Deposits and physical properties of pyroclastic density currents during complex SubPlinian eruptions: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy. Sedimentology 54:607–635. doi: 10.1111/j.1365-3091.2006.00852 CrossRefGoogle Scholar
  64. Sulpizio R, Caron B, Giaccio B, Paterne M, Siani G, Zanchetta G, Santacroce R (2008) The dispersal of ash during explosive eruptions from central volcanoes and calderas: an underestimated hazard for the Central Mediterranean area. IOP Conf. Series: 3. doi:10.1088/1755-1307/3/1/012031
  65. Sulpizio R, Cioni R, Di Vito MA, Mele D, Bonasia R, Dellino P (2010a) The Pomici di Avellino eruption of Somma-Vesuvius (3.9 ka BP) part I: stratigraphy, compositional variability and eruptive dynamics. Bull Volcanol 72:539–558. doi: 10.1007/s00445-009-0339-x Google Scholar
  66. Sulpizio R, Bonasia R, Dellino P, Mele D, Di Vito MA, La Volpe L (2010b) The Pomici di Avellino eruption of Somma-Vesuvius (3.9 ka BP) part II: sedimentology and physical volcanology of pyroclastic density current deposits. Bull Volcanol 72:559–577. doi: 10.1007/s00445-009-0340-4 Google Scholar
  67. Sulpizio R, van Welden A, Caron B, Zanchetta G (2010c) The Holocene tephrostratigraphic record of Lake Shkodra (Albania and Montenegro). J Quat Sci. doi: 10.1002/jqs.1334
  68. Todesco M, Neri A, Esposti Ongaro T, Papale P, Macedonio G, Santacroce R, Longo A (2002) Pyroclastic flow hazard assessment at Vesuvius (Italy) by using numerical modelling: I Large-scale dynamics. Bull Volcanol 64:155–177CrossRefGoogle Scholar
  69. Walker GPL (1981) Plinian eruptions and their products. Bull Volcanol 44:223–240CrossRefGoogle Scholar
  70. Witham C, Hort M, Potts R, Servranckx R, Husson P, Bonnardot F (2007) Comparison of VAAC atmospheric dispersion models using the 1 November 2004 Grimsvotn eruption. Meteorol Appl 14:27–38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Barcelona Supercomputing CenterCentro Nacional de SupercomputaciónBarcelonaSpain
  2. 2.CIRISIVUc/o Dipartimento GeomineralogicoBariItaly

Personalised recommendations