Advertisement

Bulletin of Volcanology

, Volume 72, Issue 8, pp 971–990 | Cite as

Structure and evolution of the Rockeskyllerkopf Volcanic Complex, West Eifel Volcanic Field, Germany

  • Cliff S. J. Shaw
  • Alan B. Woodland
  • Jens Hopp
  • Nesha D. Trenholm
Research Article

Abstract

The Rockeskyllerkopf Volcanic Complex (RVC) comprises three overlapping monogenetic volcanic centers: Southeast Lammersdorf (SEL), Mäuseberg (M) and Rockeskyllerkopf (RKK). Each volcanic center comprises proximal wall deposits with a well defined crater wall unconformity and crater fill deposits that partially to completely cover the outer crater wall. The SEL Center is a phreatomagmatic tuff ring composed of lithic rich tephra deposited by pyroclastic falls and surges. The second center, Mäuseberg, with its crater to the northwest of the SEL Center is predominantly magmatic. Topographic and outcrop patterns suggest that this center may have formed a series of overlapping scoria cones along a N–S trending fissure. The youngest center, RKK, which lies on a poorly developed palaeosol within the earlier Mäuseberg deposits, comprises a well developed proximal crater wall sequence. This sequence of magmatic, likely Strombolian, fall and grain avalanche deposits passes upward into a crater fill sequence that comprises variably welded bombs. The final eruptions in the center were massive lava flows that were ponded within the RKK crater. Ar–Ar age dating of reequilibrated fragments of phlogopite megacrysts in the SEL lavas indicates volcanic activity began at 474 ± 39 ka. Literature K–Ar dates for the youngest lava flows in the RKK Center give ages of 360 ± 60 to 470 ka. Our interpretation of the age data and the presence of the poorly developed palaeosol between the Mäuseberg and RKK centers indicates that volcanism in the RVC began around 470 ka with the eruption of the SEL and Mäuseberg centers followed a few thousand years later by the eruption of the RKK Center.

Keywords

West Eifel Germany Monogenetic volcanism Quaternary Phreatomagmatic eruptions 

Notes

Acknowledgements

CS thanks the Alexander von Humboldt Stiftung for support. We acknowledge funding from NSERC (CS) and DFG (ABW) that supported the research presented here. We thank Audrey Avison, Samantha and Tabitha Shaw, Sarah and Gareth Woodland for their help in the field. Gareth Woodland collected Rocko 1 and Nicole Huber painstakingly separated Rocko 2. The hospitality and logistical help of Dr. P. Bitchene and P. Bartlick is gratefully acknowledged. Thanks also to J. Heliosch and A. Murphy, for assistance with sample preparation and to the students from the 2005 and 2009 Frankfurt field schools for their hard work in collecting and sieving samples. We are very grateful to H-U Schmincke and A. Klügel for their very thorough and helpful reviews. Also thanks to Associate Editor M.A. Clynne for comments and suggestions on the Ar–Ar data.

Supplementary material

445_2010_380_MOESM1_ESM.doc (52 kb)
Electronic Appendix 1 Ar–Ar age dating data (DOC 52 kb)

References

  1. Bednarz U, Schmincke H-U (1990) Evolution of the Quarternary melilite–nephelinite Herchenberg volcano (East Eifel). Bull Volcanol 52:426–444CrossRefGoogle Scholar
  2. Büchel G (1994) Vulkanologische Karte West- und Hocheifel. Landesvermessungsamt Rheinland-PfalzGoogle Scholar
  3. Büchel G, Mertes H (1982) Die Eruptionszentren des Westeifeler Vulkanfeldes. Z Dtsch Geol Ges 133:409–429Google Scholar
  4. Büchel G, Lorenz V, Schmincke H-U, Zimanowski B (1986) Quartäre Vulkanfelder der Eifel. Fortschr Mineral 64:97–141Google Scholar
  5. Cas R, Porrit L, Pittari A, Hayman P (2008) A new approach to kimberlite facies terminology using a revised general approach to the nomenclature of all volcanic rocks and deposits: descriptive to genetic. J Volcanol Geotherm Res 174:226–240CrossRefGoogle Scholar
  6. Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J, Ballard RD (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 331–343Google Scholar
  7. Duda A, Schmincke H-U (1985) Polybaric differentiation of alkali basalt magmas: evidence from green-core clinopyroxenes (Eifel, FRG). Contrib Mineral Petrol 91:340–353CrossRefGoogle Scholar
  8. Fisher RV (1977) Erosion by volcanic base-surge density currents: U shaped channels. Geol Soc Amer Bull 88:1287–1297CrossRefGoogle Scholar
  9. Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, BerlinGoogle Scholar
  10. Giletti BJ (1974) Studies in diffusion I: Argon in phlogopite mica. In: Hofmann AW, Giletti BJ Yoder H, Yund RA (eds) Geochemical transport and kinetics. Carnegie Institution of Washington, pp 107–115Google Scholar
  11. Hajdas I, Zolitschka B, Ivy-Ochs S, Beer J, Bonani G, Leroy S, Negendank JFW, Ramrath M, Suter M (1995) AMS radiocarbon dating of annually laminated sediments from Lake Holzmaar, Germany. Quat Sci Rev 14:137–143CrossRefGoogle Scholar
  12. Houghton BF, Schmincke H-U (1986) Mixed deposits of simultaneous strombolian and phreatomagmatic volcanism, Rothenberg Volcano, East Eifel Volcanic Field. J Volcanol Geotherm Res 30:117–130CrossRefGoogle Scholar
  13. Houghton BF, Schmincke H-U (1989) Rothernberg scoria cone, East Eifel: a complex Strombolian and phreatomagmatic volcano. Bull Volcanol 52:28–48CrossRefGoogle Scholar
  14. Kuhl HP (1980) Geologische und geomagnetische Untersuchung quaternaerer Vulkanite im Zentralbereich der Westeifeler Vulkanzone (Hillesheim - Dohm - Rockeskyll). Johann Wolfgang Goethe Universität, Frankfurt am Main, Germany, Diplom ThesisGoogle Scholar
  15. Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci Rev 81:1–65CrossRefGoogle Scholar
  16. Mertes H (1983) Aufbau und Genese des Westeifeler Vulkanfelde. Bochumer Geologische und Geotechnische Arbeiten, 9Google Scholar
  17. Mertes H, Schmincke H-U (1983) Age distribution of volcanoes in the West-Eifel. Neues Jahrb Geol Paläontol Abh 166:260–293Google Scholar
  18. Mertes H, Schmincke H-U (1985) Mafic potassic lavas of the Quarternary West Eifel volcanic field. Contrib Mineral Petrol 89:330–345CrossRefGoogle Scholar
  19. Nowell D, Jones M, Pyle D (2006) Episodic Quarternary volcanism in France and Germany. J Quat Sci 21:645–675CrossRefGoogle Scholar
  20. Riley TR (1994) Quaternary volcanism of the Rockeskyll Complex, West Eifel, Germany and the Carbonatite-Nephelinite-Phonolite Association. PhD thesis, University of Bristol, Bristol, UKGoogle Scholar
  21. Riley TR, Bailey DK, Lloyd FE (1996) Extrusive carbonatite from the Quarternary Rockeskyll Complex, West Eifel, Germany. Can Mineral 34:389–401Google Scholar
  22. Schmincke H-U (2005) Volcanism. Springer, BerlinGoogle Scholar
  23. Schmincke H-U (2007) The Quarternary volcanic fields of the East and West Eifel (Germany). In: Ritter JRR, Christensen UR (eds) Mantle plumes. Springer, Berlin, pp 241–322CrossRefGoogle Scholar
  24. Schwarz W, Trieloff W (2007) Intercalibration of 40Ar–39Ar age standards NL–25, HB3gr hornblende, GA1550, SB–3, HD–B1 biotite and BMus/2 muscovite. Chem Geol 242:218–231CrossRefGoogle Scholar
  25. Shaw CSJ (2004) The temporal evolution of three magmatic systems in the West Eifel volcanic field, Germany. J Volcanol Geotherm Res 131:213–240CrossRefGoogle Scholar
  26. Shaw CSJ (2009) Caught in the act—the first few hours of xenolith assimilation preserved in lavas of the Rockeskyllerkopf volcano, West Eifel, Germany. Lithos 112:511–523CrossRefGoogle Scholar
  27. Shaw CSJ, Eyzaguirre J (2000) Origin of megacrysts in the alkaline lavas of the West Eifel volcanic field, Germany. Lithos 50:75–95CrossRefGoogle Scholar
  28. Shaw CSJ, Eyzaguirre J, Fryer BJ, Gagnon J (2005) Regional variations in the mineralogy of metasomatic assemblages in mantle xenoliths from the West Eifel Volcanic Field, Germany. J Petrol 46:945–972CrossRefGoogle Scholar
  29. Steiger R, Jaeger C (1977) Subcommision on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  30. Stosch H-G (1982) Rare earth element partitioning between minerals from anhydrous spinel peridotite xenoliths. Geochim Cosmochim Acta 46:793–811CrossRefGoogle Scholar
  31. Streck MJ, Grunder AL (1995) Crystallization and welding variations in a widespread ignimbrite sheet; the Rattlesnake Tuff, eastern Oregon, USA. Bull Volcanol 57:151–169Google Scholar
  32. van den Bogaard P (1995) 40Ar/39Ar ages of sanidine phenocrysts from Laacher See Tephra (12, 900 BP): Chronostratigraphic and petrological significance. Earth Planet Sci Lett 133:163–174CrossRefGoogle Scholar
  33. Walker GPL (2000) Basaltic volcanoes and volcanic systems. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J, Ballard RD (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 283–289Google Scholar
  34. Witt-Eickschen G, Kaminsky W, Kramm U, Harte B (1998) The nature of young vein metasomatism in the lithosphere of the West Eifel (Germany): geochemical and isotopic constraints from the composite mantle xenoiths from the Meerfelder Maar. J Petrol 39:155–185CrossRefGoogle Scholar
  35. Witt-Eickschen G, Klemd R, Seck HA (2003a) Density contrast of fluid inclusions associated with melt (glass) from two distinct suites of mantle peridotites from the West Eifel, Germany: implications for melt origin. Eur J Mineral 15:95–102CrossRefGoogle Scholar
  36. Witt-Eickschen G, Seck HA, Mezger K, Eggins SM, Altherr R (2003b) Lithospheric mantle evolution beneath the Eifel (Germany): constraints from Sr-Nd-Pb isotopes and trace element abundances in spinel peridotite and pyroxenite xenoliths. J Petrol 44:1077–1095CrossRefGoogle Scholar
  37. Wood CA, Kienle J (1990) Volcanoes of North America: United States and Canada. Cambridge University PressGoogle Scholar
  38. Wood CA, Shoan WC (1981) Growth patterns of monogenetic volcano fields. EOS Trans Am Geophys Union 62:1061Google Scholar
  39. York D (1969) Least squares fitting of a straight line with corrrelated errors. Earth Planet Sci Lett 5:320–324CrossRefGoogle Scholar
  40. Zolitschka B, Negendank J, Lottermoser B (1995) Sedimentological proof and dating of the early Holocene volcanic eruption of Ulmener Maar (Vulkaneifel, Germany). Geol Rundsch 84:213–219CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Cliff S. J. Shaw
    • 1
    • 2
  • Alan B. Woodland
    • 1
  • Jens Hopp
    • 3
  • Nesha D. Trenholm
    • 2
  1. 1.Institut für Geowissenschaften, Johann Wolfgang Goethe-UniversitätAbt. Physikalisch-Chemische MineralogieFrankfurt am MainGermany
  2. 2.Department of GeologyUniversity of New BrunswickFrederictonCanada
  3. 3.Mineralogisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations