Bulletin of Volcanology

, Volume 72, Issue 9, pp 1021–1038 | Cite as

Pyroclastic flow hazard assessment at Somma–Vesuvius based on the geological record

  • L. GurioliEmail author
  • R. Sulpizio
  • R. Cioni
  • A. Sbrana
  • R. Santacroce
  • W. Luperini
  • D. Andronico
Research Article


During the past 22 ka of activity at Somma–Vesuvius, catastrophic pyroclastic density currents (PDCs) have been generated repeatedly. Examples are those that destroyed the towns of Pompeii and Ercolano in AD 79, as well as Torre del Greco and several circum-Vesuvian villages in AD 1631. Using new field data and data available from the literature, we delineate the area impacted by PDCs at Somma–Vesuvius to improve the related hazard assessment. We mainly focus on the dispersal, thickness, and extent of the PDC deposits generated during seven plinian and sub-plinian eruptions, namely, the Pomici di Base, Greenish Pumice, Pomici di Mercato, Pomici di Avellino, Pompeii Pumice, AD 472 Pollena, and AD 1631 eruptions. We present maps of the total thickness of the PDC deposits for each eruption. Five out of seven eruptions dispersed PDCs radially, sometimes showing a preferred direction controlled by the position of the vent and the paleotopography. Only the PDCs from AD 1631 eruption were influenced by the presence of the Mt Somma caldera wall which stopped their advance in a northerly direction. Most PDC deposits are located downslope of the pronounced break-in slope that marks the base of the Somma–Vesuvius cone. PDCs from the Pomici di Avellino and Pompeii Pumice eruptions have the most dispersed deposits (extending more than 20 km from the inferred vent). These deposits are relatively thin, normally graded, and stratified. In contrast, thick, massive, lithic-rich deposits are only dispersed within 7 to 8 km of the vent. Isopach maps and the deposit features reveal that PDC dispersal was strongly controlled by the intensity of the eruption (in terms of magma discharge rate), the position of the vent area with respect to the Mt Somma caldera wall, and the pre-existing topography. Facies characteristics of the PDC deposits appear to correlate with dispersal; the stratified facies are consistently dispersed more widely than the massive facies.


Pyroclastic flow Hazard assessment Mt Somma Pyroclastic density currents Facies 



We are grateful to Benjamin van wyk de Vries for providing useful comments on earlier drafts of the manuscript and to Steve Self and Mauro Di Vito for their thorough and helpful reviews. Andrew Harris helped with the final checking of the manuscript. We thank Jocelyn McPhie for her patience, great editorial handling, and the careful final editing of the manuscript. We gratefully acknowledge support from the Somma–Vesuvius CARG Project (grant to R. Santacroce). R. Cioni, L. Gurioli, and R. Sulpizio completed their field work while still working at Dip. di Scienze della Terra, University of Pisa (Italy).


  1. Albore Livadie C (1980) Palma Campania (Napoli). Resti di un abitato dell’eta’ del Bronzo antico. Atti dell’accademia nazionale dei Lincei. Notizie degli scavi di antichita’ 105:59–101Google Scholar
  2. Andronico D, Cioni R (2002) Contrasting styles of Mount Vesuvius activity in the period between the Avellino and Pompeii plinian eruptions, and some implications for assessment of future hazards. Bull Volcanol 64:372–391Google Scholar
  3. Andronico D, Calderoni G, Cioni R, Sbrana A, Sulpizio R, Santacroce R (1995) Geological map of Somma–Vesuvius volcano. Period Mineral 64:77–78Google Scholar
  4. Arnò V, Principe C, Rosi M, Santacroce R, Sbrana A, Sheridan MF (1987) Eruptive history. In: Santacroce R (ed) Somma–Vesuvius quaderni de la ricerca scientifica. CNR, Rome, pp 53–104Google Scholar
  5. Aulinas M, Civetta L, Di Vito MA, Orsi G, Gimeno D, Férnandez-Turiel JL (2008) The “Pomici di mercato” plinian eruption of Somma–Vesuvius: magma chamber processes and eruption dynamics. Bull Volcanol 70:825–840. doi: 10.1007/s00445-007-0172-z Google Scholar
  6. Baxter PJ, Neri A, Todesco M (1998) Physical modeling and human survival in pyroclastic flows. Nat Haz 17:163–176Google Scholar
  7. Baxter PJ, Aspinall WP, Neri A, Zuccaro G, Spence RS, Cioni R, Woo G (2008) Emergency planning and mitigation at Vesuvius: a new evidence-based approach. J Volcanol Geotherm Res 178:454–473Google Scholar
  8. Belousov A, Voight B, Belousov M (2007) Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits. Bull Volcanol 69:701–740Google Scholar
  9. Bertagnini A, Landi P, Rosi M, Vigliargio A (1998) The Pomici di Base plinian eruption of Somma–Vesuvius. J Volcanol Geotherm Res 83:219–239Google Scholar
  10. Blong RJ (1984) Volcanic hazards, a sourcebook on the effects of eruptions. Academic, Orlando, Florida (USA)Google Scholar
  11. Bonadonna C (2006) Probabilistic modelling of tephra dispersion. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology. IAVCEI Spec Pub 1:243–259Google Scholar
  12. Bursik MI, Woods AW (1996) The dynamics and thermodynamics of large ash flows. Bull Volcanol 58:175–193Google Scholar
  13. Burt ML, Wadge G, Curnow RN (2001) An objective method for mapping hazardous flow deposits from the stratigraphic record of stratovolcanoes: a case example from Montagne Peleè. Bull Volcanol 63:98–111Google Scholar
  14. Calder ES, Luckett R, Sparks RSJ, Voight B (2002) Mechanisms of lava dome instability and generation of rockfalls and pyroclastic flows at Soufrière Hills Volcano, Montserrat. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills volcano, Montserrat, from 1995 to1999. Geol Soc London Mem 21:173–190Google Scholar
  15. Carey S, Sigurdsson H (1987) Temporal variations in column high and magma discharge rate during the AD 79 eruption of Vesuvius. Geol Soc Am Bull 99:303–314Google Scholar
  16. Carracedo JC, Principe C, Rosi M, Soler V (1993) Time correlation by paleomagnetism of the 1631 eruption of Mount Vesuvius. Volcanological and volcanic hazard implications. J Volcanol Geotherm Res 58:203–209Google Scholar
  17. Cioni R, Marianelli P, Sbrana A (1992) Dynamics of the A.D. 79 eruption: stratigraphic sedimentological and geochemical data on the successions from the Somma–Vesuvius southern and eastern sectors. Acta Vulcanol 2:109–124Google Scholar
  18. Cioni R, Santacroce R, Sbrana A (1999a) Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma–Vesuvius Caldera. Bull Volcanol 60:207–222Google Scholar
  19. Cioni R, Morandi D, Sbrana A, Sulpizio R (1999b) L’eruzione pliniana di avellino del somma-vesuvio (ca. 3400 b.p.): aspetti stratigrafico-vulcanologici e dinamica eruttiva. In: Albore Livadie C (ed) L’eruzione vesuviana delle Pomici di Avellino e la facies di Palma Campania (Bronzo Antico). Edipuglia, Bari, pp 61–91Google Scholar
  20. Cioni R, Levi S, Sulpizio R (2000a) Apulian bronze age pottery as a long distance indicator of the Avellino Pumice eruption (Vesuvius, Italy). In: McGuire WG et al (eds) The archaeology of geological catastrophes. Geol Soc Spec Pub 171:159–177Google Scholar
  21. Cioni R, Gurioli L, Sbrana A, Vougioukalakis G (2000b) Precursory phenomena and destructive events related to the Late Bronze Age Minoan (Thera, Greece) and A.D. 79 (Vesuvius, Italy) plinian eruptions: inferences from the stratigraphy in the archaeological areas. In: McGuire WG et al (eds) The archaeology of geological catastrophes. Geol Soc Spec Pub 171:123–141Google Scholar
  22. Cioni R, Sulpizio R, Garruccio N (2003a) Variability of the eruption dynamics during a subplinian event: the Greenish Pumice eruption of Somma–Vesuvius (Italy). J Volcanol Geotherm Res 124:89–114Google Scholar
  23. Cioni R, Longo A, Macedonio G, Santacroce R, Sbrana A, Sulpizio R, Andronico D (2003b) Assessing pyroclastic fall hazard through field data and numerical simulations: example from Vesuvius. J Geophys Res 108:2063. doi: 10.1029/2001JB000642 Google Scholar
  24. Cioni R, Gurioli L, Lanza R, Zanella E (2004) Temperatures of the A.D. 79 pyroclastic density current deposits (Vesuvius, Italy). J Geophys Res 109:B02207. doi: 10.1029/2002JB002251 Google Scholar
  25. Cioni R, Bertagnini A, Santacroce R, Andronico D (2008) Explosive activity and eruption scenarios at Somma–Vesuvius (Italy): towards a new classification scheme. J Volcanol Geotherm Res 178:331–346. doi: 10.1016/j.jvolgeores.2008.04.024 Google Scholar
  26. Crandell DR, Miller CD, Glicken HX, Christiansen RL, Newhall CG (1984) Catastrophic debris avalanche from ancestral Mount Shasta volcano, California. Geology 12:143–146Google Scholar
  27. De la Cruz-Reyna S, Carrasco-Nunez (2002) Probabilistic hazard analysis of Citlaltepetl (Pico de Orizaba) Volcano, eastern Mexican Volcanic Belt. J Volcanol Geotherm Res 113:307–318Google Scholar
  28. Delibrias G, Di Paola GM, Rosi M, Santacroce R (1979) La storia eruttiva del complesso vulcanico Somma–Vesuvio ricostruita dalle successioni piroclastiche del Monte Somma. Rend Soc It Mineral Petrol 35:411–438Google Scholar
  29. Dellino P, Zimanowski B, Buttner R, La Volpe L, Mele D, Sulpizio R (2007) Large-scale experiments on the mechanics of pyroclastic flows: design, engineering, and first results. J Geophys Res 112:B04202. doi: 10.1029/2006JB004313 Google Scholar
  30. Dellino P, Mele D, Sulpizio R, La Volpe L, Braia G (2008) A method for the calculation of the impact parameters of dilute pyroclastic density currents based on deposit particle characteristics. J Geophys Res 113:B07206. doi: 10.1029/2007JB005365 Google Scholar
  31. Denniss AM, Harris AJL, Rothery DA, Francis PW, Carlton RW (1998) Satellite observations of the April 1993 eruption of Lascar volcano. Int J Rem Sens 19:801–821Google Scholar
  32. Di Renzo V, Di Vito MA, Arienzo I, Carandente A, Civetta L, D’Antonio M, Giordano F, Orsi G, Tonarini S (2007) Magmatic history of Somma–Vesuvius on the basis of new geochemical and isotopic data from a deep borehole (Camaldoli della Torre). J Petrol 48:753–784Google Scholar
  33. Di Vito MA (1999) Distribuzione dei depositi dell’eruzione delle Pomici di Avellino (XVII–XVIII sec a.C.) nell’area napoletana e ricostruzione del paleoambiente prima e dopo l’eruzione. In: Livadie CA (ed) L’eruzione vesuviana delle Pomici di Avellino e la facies di Palma Campania (Bronzo Antico)Google Scholar
  34. Di Vito M, Sulpizio R, Zanchetta G, Calderoni G (1998) The geology of the south western slopes of Somma–Vesuvius, Italy, as inferred by borehole stratigraphies and cores. Acta Vulcanol 10:383–393Google Scholar
  35. Di Vito MA, Zanella E, Gurioli L, Lanza R, Sulpizio R, Tema E, Amato L, Bishop G, Boenzi G, De Filippis A, Laforgia E (2009) The Afragola settlement at Vesuvius, Italy: the destruction and abandonment of a Bronze Age village revealed by archaelogy, volcanology and rock-magnetism. Earth Planet Sci Let 277:408–421Google Scholar
  36. Dobran F, Neri A, Todesco M (1994) Assessing the pyroclastic flow hazard at Vesuvius. Nature 367:551–554Google Scholar
  37. Druitt TH (1998) Pyroclastic density currents. In: Gilbert JS and Sparks RSJ (eds) The physics of explosive volcanic eruptions. Geol Soc London Spec Publ 145:145–182Google Scholar
  38. Esposti Ongaro T, Neri A, Todesco M, Macedonio G (2002) Pyroclastic flow hazard assessment at Vesuvius (Italy) by using numerical modelling. 2. Analysis of flow variable. Bull Volcanol 64:178–191Google Scholar
  39. Esposti Ongaro T, Neri A, Menconi G, De'Michieli Vitturi M, Marianelli P, Cavazzoni C, Erbacci G, Baxter PJ (2008) Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius. J Volcanol Geotherm Res 178:378–396Google Scholar
  40. Favalli M, Pareschi MT (2004) Digital elevation model reconstruction preserving surface morphological structures. J Geophys Res 109:F04004. doi: 10.1029/2004JF000150 Google Scholar
  41. Fisher RV (1995) Decoupling of pyroclastic currents: hazard assessments. J Volcanol Geotherm Res 66:257–263Google Scholar
  42. Freundt A, Wilson CJN, Carey SN (2000) Ignimbrites and block-and-ash flow deposits. In: Sigurdsson H, Houghter B, Menutt S, Rymes H, Shy J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 581–599Google Scholar
  43. Gialanella P, Incoronato A, Russo F, Nigro G (1993) Magnetic stratigraphy of Vesuvius products. I - 1631 lavas. J Volcanol Geotherm Res 58:211–215Google Scholar
  44. Gurioli L (2000a) Flussi piroclastici: classificazioni e meccanismi di trasporto e di messa in Posto. Ph.D. thesis, University of Pisa, ItalyGoogle Scholar
  45. Gurioli L (2000b) Pyroclastic flow: classification, transport and emplacement mechanisms. Plinius 23:84–89Google Scholar
  46. Gurioli L, Cioni R, Bertagna C (1999) I depositi di flusso piroclastico dell’eruzione del 79 d.C. caratterizzazione stratigrafica, sedimentologica e modelli di trasporto e deposizione. Atti Soc Tosc Sci Nat Mem Serie A 106:61–72Google Scholar
  47. Gurioli L, Cioni R, Sbrana A, Zanella E (2002) Transport and deposition from pyroclastic flows over densely inhabited areas: Herculaneum (Italy). Sedimentology 46:929–953Google Scholar
  48. Gurioli L, Houghton B, Cashman K, Cioni R (2005a) Complex changes in eruption dynamics and the transition between plinian and phreatomagmatic activity during the 79 AD eruption of Vesuvius. Bull Volcanol 67:144–159Google Scholar
  49. Gurioli L, Pareschi MT, Zanella E, Lanza R, Deluca E, Bisson M (2005b) Interaction of pyroclastic currents with human settlements: evidences from ancient Pompeii. Geology 33:441–444Google Scholar
  50. Gurioli L, Zanella E, Pareschi MT, Lanza R (2007) Influences of urban fabric on pyroclastic density currents at Pompeii (Italy) I: flow direction and deposition. J Geophys Res 112:B05213. doi: 10.1029/2006JB004444 Google Scholar
  51. Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69:1–24. doi: 10.1007/s00445-006-0052-y Google Scholar
  52. Lirer L, Pescatore T, Booth B, Walker GPL (1973) Two plinian pumice-fall deposits from Somma–Vesuvius, Italy. Bull Geol Soc Am 84:759–772Google Scholar
  53. Lirer L, Munno R, Petrosino P, Vinci A (1993) Tephrostratigraphy of the AD 79 pyroclastic deposits in perivolcanic areas of Mt. Vesuvio (Italy). J Volcanol Geotherm Res 58:133–139Google Scholar
  54. Lirer L, Petrosino P, Alberico I, Postiglione I (2001) Long-term volcanic hazard forecasts based on Somma-Vesuvio past eruptive activity. Bull Volcanol 63:45–60Google Scholar
  55. Luongo G, Perrotta A, Scarpati C (2003a) Impact of the AD 79 eruption on Pompeii, I. Relations amongst the depositional mechanisms of the pyroclast products, the framework of the buildings and the associated destructive events. J Volcanol Geotherm Res 126:201–223Google Scholar
  56. Luongo G, Perrotta A, Scarpati C, De Carolis E, Patricelli G, Ciarallo A (2003b) Impact of the A.D. 79 eruption on Pompeii. II. Causes of death of the inhabitants inferred by stratigraphic analysis and areal distribution of the human causalities. J Volcanol Geotherm Res 126:169–200Google Scholar
  57. Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res 109:B11201. doi: 10.1029/2004JB003155 Google Scholar
  58. Mastrolorenzo G, Palladino DM, Vecchio G, Taddeucci J (2002) The 472 AD Pollena eruption of Somma–Vesuvius (Italy) and its environmental impact at the end of Roman Empire. J Volcanol Geotherm Res 113:19–36Google Scholar
  59. Mastrolorenzo G, Petrone P, Pappalardo L, Sheridan MF (2006) The Avellino 3780-yr-B.P. catastrophe as a worst-case scenario for a future eruption at Vesuvius. Proc Nat Acad Sci 103:4366–4370Google Scholar
  60. Nakada S (2000) Hazard from pyroclastic flows and surges. In: Sigurdsson H, Houghton BF, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 945–955Google Scholar
  61. Orsi G, de Vita S, Di Vito MA (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214Google Scholar
  62. Petterson MG, Cronin SJ, Taylor PW, Tolia D, Papabatu A, Toba T, Qopoto C (2003) The eruptive history and volcanic hazards of Savo, Solomon Islands. Bull Volcanol 65:165–181Google Scholar
  63. Rolandi G, Barrella AM, Borrelli A (1993a) The 1631 eruption of Vesuvius. J Volcanol Geotherm Res 58:183–201Google Scholar
  64. Rolandi G, Maraffi S, Petrosino P, Lirer L (1993b) The Ottaviano eruption of Somma–Vesuvius (8000 years BP): a magmatic alternating fall and flow-forming eruption. J Volcanol Geotherm Res 58:43–65Google Scholar
  65. Rolandi G, Mastrolorenzo G, Barella AM, Borrelli A (1993c) The Avellino plinian eruption of Somma–Vesuvius (3760 y.B.P): the progressive evolution from magmatic to hydromagmatic style. J Volcanol Geotherm Res 58:67–88Google Scholar
  66. Rolandi G, Munno R, Postiglione I (2004) The A.D. 472 eruption of the Somma volcano. J Volcanol Geotherm Res 129:291–319Google Scholar
  67. Rosi M, Santacroce R (1983) The A.D. 472 “Pollena” eruption: volcanological and petrological data for this poorly-known, plinian-type event at Vesuvius. J Volcanol Geotherm Res 17:249–271Google Scholar
  68. Rosi M, Principe C, Vecci R (1993) The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data. J Volcanol Geotherm Res 58:151–182Google Scholar
  69. Santacroce R (ed) (1987) Somma–Vesuvius. CNR Quad Ric Sci 8 114:1–251Google Scholar
  70. Santacroce R, Sbrana A (eds) (2003) Geological map of Vesuvius. SELCA FirenzeGoogle Scholar
  71. Santacroce R, Cioni R, Marianelli P, Sbrana A, Sulpizio R, Zanchetta G, Donahue DJ, Joron JL (2008) Age and whole rock-glass compositions of proximal pyroclastics from the major explosive eruptions of Somma–Vesuvius: a review as a tool for distal tephrostratigraphy. J Volcanol Geotherm Res 177:1–18. doi: 10.1016/j.jvolgeores.2008.06.009 Google Scholar
  72. Scott WE, Hoblitt RP, Torres RC, Self S, Martinez Ma. ML, Nillos T Jr (1996) Pyroclastic flows of the June 15, 1991 climactic eruption of Mount Pinatubo. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. Philippine Institute of Volcanology and Seismology, Quezon City, and University of Washington Press, Seattle and London, pp 545–570Google Scholar
  73. Sheridan MF, Hubbard B, Carrasco-Nunez G, Siebe C (2004) Pyroclastic flow hazard at Volcan Citlaltepetl. Nat Haz 33:209–221Google Scholar
  74. Sigurdsson H, Cashdollar S, Sparks RSJ (1982) The eruption of Vesuvius in AD 79: reconstruction from historical and volcanological evidence. Am J Archaeol 86:39–51Google Scholar
  75. Sigurdsson H, Carey S, Cornell W, Pescatore T (1985) The eruption of Vesuvius in A.D. 79. Natl Geogr Res 1:332–387Google Scholar
  76. Spence R, Brichieri-Colombi N, Holdsworth F, Baxter P, Zuccaro G (2004) Vesuvius: building vulnerability and human casualty estimation for a pyroclastic flow. J Volcanol Geotherm Res 133:321–343Google Scholar
  77. Sulpizio R, Mele D, Dellino P, La Volpe L (2005) A complex, subplinian-type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: the AD 472 (Pollena) eruption of Somma–Vesuvius, Italy. Bull Volcanol 67:743–767Google Scholar
  78. Sulpizio R, Mele D, Dellino P, La Volpe L (2007) Deposits and physical properties of pyroclastic density currents during complex subplinian eruptions: the AD 472 (Pollena) eruption of Somma–Vesuvius, Italy. Sedimentology 54:607–635. doi: 10.1111/j.1365-3091.2006.00852 Google Scholar
  79. Sulpizio R, Bonasia R, Dellino P, Di Vito MA, La Volpe L, Mele D, Zanchetta G, Sadori L (2008a) Discriminating the long distance dispersal of fine ash from sustained columns or near ground ash clouds: the example of the Pomici di Avellino eruption (Somma–Vesuvius, Italy). J Volcanol Geotherm Res 177:263–276. doi: 10.1016/j.jvolgeores.2007.11.012 Google Scholar
  80. Sulpizio R, Cioni R, Di Vito MA, Santacroce R, Sbrana A, Zanchetta G (2008b) Comment on: “The dark nature of Somma–Vesuvius volcano: evidence from the 3.5 ka BP Avellino eruption” by Milia A, Raspini A, Torrente MM. Quat Int 192:102–109Google Scholar
  81. Sulpizio R, Cioni R, Di Vito MA, Mele D, Bonasia R, Dellino P (2009a) The Pomici di Avellino eruption of Somma–Vesuvius (3.9 ka BP), part I: stratigraphy, compositional variability and eruptive dynamics. Bull Volcanol. doi: 10.1007/s00445-009-0339-x
  82. Sulpizio R, Bonasia R, Dellino P, Mele D, Di Vito MA, La Volpe L (2009b) The Pomici di Avellino eruption of Somma–Vesuvius (3.9 ka BP), part II: Sedimentology and physical volcanology of pyroclastic density current deposits. Bull Volcanol. doi: 10.1007/s00445-009-0340-4
  83. Tanguy JC, Ribiere C, Scarth A, Tjetjep WS (1998) Victims from volcanic eruptions: a revised database. Bull Volcanol 60:137–144Google Scholar
  84. Tilling RI, Lipman PW (1993) Lessons in reducing volcanic risks. Nature 364:77–280Google Scholar
  85. Valentine GA (1998) Damage to structures by pyroclastic flow and surges, inferred from nuclear weapons effects. J Volcanol Geotherm Res 87:117–140Google Scholar
  86. Walker GPL (1977) Metodi geologici per la valutazioni del rischio vulcanico. Atti Conv I vulcani attivi dell’area napoletana, Regione Campania, Naples, pp 53–60Google Scholar
  87. Wolfe EW, Pierson TC (1995) Volcanic-hazard zonation for Mount St. Helens, Washington, 1995. US Geol Surv Open-File Rep 95–497:1–14Google Scholar
  88. Zanella E, Gurioli L, Pareschi MT, Lanza R (2007) Influences of urban fabric on pyroclastic density currents at Pompeii (Italy), part II: temperature of the deposits and hazard implications. J Geophys Res 112:B05214. doi: 10.1029/2006JB004775 Google Scholar
  89. Zanella E, Gurioli L, Lanza R, Sulpizio R, Bontempi M (2008) Deposition temperature of the AD 472 Pollena pyroclastic density current deposits, Somma–Vesuvius, Italy. Bull Volcanol 70:1237–1248. doi: 10.1007/s00445-008-0199-9 Google Scholar
  90. Zuccaro G, Cacace F, Spence RS, Baxter PJ (2008) Impact of explosive eruption scenarios at Vesuvius. J Volcanol Geotherm Res 178:416–453. doi: 10.1016/j.jvolgeores.2008.01.0005 Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • L. Gurioli
    • 1
    • 2
    • 3
    Email author
  • R. Sulpizio
    • 4
  • R. Cioni
    • 5
  • A. Sbrana
    • 6
  • R. Santacroce
    • 6
  • W. Luperini
    • 6
  • D. Andronico
    • 7
  1. 1.Clermont Université, Université Blaise Pascal, Laboratoire Magmas et VolcansClermont-FerrandFrance
  2. 2.CNRS, UMR 6524, LMVClermont-FerrandFrance
  3. 3.IRD, R 163, LMVClermont-FerrandFrance
  4. 4.CIRISIVU, c/o Dipartimento GeomineralogicoBariItaly
  5. 5.Dipartimento di Scienze della TerraCagliariItaly
  6. 6.Dipartimento di Scienze della TerraPisaItaly
  7. 7.INGV sezione di Catania Piazza Roma, 2CataniaItaly

Personalised recommendations