Bulletin of Volcanology

, Volume 72, Issue 8, pp 1009–1020 | Cite as

Major and trace element distributions around active volcanic vents determined by analyses of grasses: implications for element cycling and bio-monitoring

  • R. S. Martin
  • T. A. Mather
  • D. M. Pyle
  • J. A. Day
  • M. L. I. Witt
  • S. J. Collins
  • R. G. Hilton
Research Article

Abstract

Samples of grass were collected at Masaya Volcano (Nicaragua; Rhynchelytrum repens and Andropogon angustatus) and the Piton de La Fournaise (around the April 2007 eruptive vent, La Réunion; Vetiveria zizanioides) to investigate the controls on major and trace element concentrations in plants around active volcanic vents. Samples were analysed using inductively coupled plasma mass spectrometry for a wide range of elements, and atomic absorption spectroscopy for Hg. At Masaya, As, Cu, Mo, Tl and K concentrations in both grass species showed a simple pattern of variability consistent with exposure to the volcanic plume. Similar variability was found in A. angustatus for Al, Co, Cs, Hg and Mg. At the Piton de La Fournaise, the patterns of variability in V. zizanioides were more complex and related to variable exposures to emissions from both the active vent and lava flow. These results suggest that exposure to volcanic emissions is, for many elements, the main control on compositional variability in vegetation growing on active volcanoes. Thus, vegetation may be an important environmental reservoir for elements emitted by volcanoes and should be considered as part of the global biogeochemical cycles.

Keywords

Volcanic Environment Masaya Fournaise Trace element 

References

  1. Aiuppa A, Dongarra G, Valenza M, Federico C, and Pecoraino G (2003) Degassing of trace volatile metals during the 2001 eruption of Etna. In: Robock A, Oppenheimer C (eds) Volcanism and the Earth’s atmosphere. Am Geophys Union Geophys Mon 139: 41–44Google Scholar
  2. Aiuppa A, Bagnato E, Witt MLI, Mather TA, Parello F, Pyle DM, Martin RS (2007) Real-time simultaneous detection of volcanic Hg and SO2 at La Fossa Crater, Vulcano (Aeolian Island, Sicily). Geophys Res Lett 34:L21307. doi:10.1029/2007GL030762 CrossRefGoogle Scholar
  3. Allen AG, Mather TA, McGonigle AJS, Aiuppa A, Delmelle P, Davison B, Bobrowski N, Oppenheimer C, Pyle DM, Inguaggiato S (2006) Sources, size distribution and downwind grounding of aerosols from Mt. Etna. J Geophys Res 111:D10302. doi:10.1029/2005JD006015 CrossRefGoogle Scholar
  4. Antiochia R, Campanella L, Ghezzi P, Movassaghi K (2007) The use of vetiver for remediation of heavy metal soil contamination. Anal Bioanal Chem 388:947–956. doi:10.1007/s00216-007-1268-1 CrossRefGoogle Scholar
  5. Bellomo S, Aiuppa A, D’Alessandro W, Parello F (2007) Environmental impact of magmatic fluorine emission in the Mt. Etna area J Volcanol Geotherm Res 65:87–101. doi:10.1016/j.jvolgeores.2007.04.013 CrossRefGoogle Scholar
  6. Bhugwant C, Sieja B, Bessafi M, Staudacher T, Ecormier J (2009) Atmospheric sulfur dioxide measurements during the 2005 and 2007 eruptions of the Piton de La Fournaise volcano: implications for human health and environment changes. J Volcanol Geotherm Res 184:208–223. doi:10.1016/j.jvolgeores.2009.04.012 CrossRefGoogle Scholar
  7. Bobrowski N, Platt U (2007) SO2/BrO ratios studied in five volcanic plumes. J Volcanol Geotherm Res 166:147–160. doi:10.1016/j.jvolgeores.2007.07.003 CrossRefGoogle Scholar
  8. Burton MR, Oppenheimer C, Horrocks LA, Francis PW (2000) Remote sensing of CO2 and H2O emission rates from Masaya volcano, Nicaragua. Geology 28: 915-918. doi:10.1130/0091-7613(2000)28<915:RSOCAH>2.0.CO;2
  9. Cape JN (1993) Direct damage to vegetation caused by acid rain and polluted cloud: definition of critical levels for forest trees. Environ Pollut 82:167–180. doi:10.1016/0269-7491(93)90114-4 CrossRefGoogle Scholar
  10. Chen Y, Shen Z, Li X (2004) The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl Geochem 19:1553–1565. doi:10.1016/j.apgeochem.2004.02.003 CrossRefGoogle Scholar
  11. Cronin SJ, Hedley MJ, Neall VE, Smith RG (1998) Agronomic impact of tephra fallout from the 1995 and 1996 Ruapehu Volcanic eruptions, New Zealand. Environ Geol 34:21–30. doi:10.1007/s002540050253 CrossRefGoogle Scholar
  12. Cumming JR, Ning J (2003) Arbuscular mycorrhizal fungi enhance aluminium resistance of broomsedge (Andropogon virginicus L.). J Exp Bot 54:1447–1459CrossRefGoogle Scholar
  13. Davies F, Notcutt G (1996) Biomonitoring of atmospheric mercury in the vicinity of Kilauea, Hawaii. Water Air Soil Poll 86:275–281. doi:10.1007/BF00279162 CrossRefGoogle Scholar
  14. Delfosse T, Delmelle P, Iserentant A, Delvaux B (2005) Contribution of SO3 to acid neutralizing capacity of Andosols exposed to strong volcanogenic acid and SO2 deposition. Eur J Soil Sci 56:113–125. doi:10.1111/j.1365-2389.2004.00646.x CrossRefGoogle Scholar
  15. Delmelle P, Stix J, Bourque CPA, Baxter PH, Garcia-Alvarez J, Barquero J (2001) Dry deposition and heavy acid loading in the vicinity of Masaya Volcano, a major sulphur and chlorine source in Nicaragua. Environ Sci Technol 35:1289–1293. doi:10.1021/es000153m Google Scholar
  16. Delmelle P, Stix J, Baxter P, Garcia-Alvarez J, Barquero J (2002) Atmospheric dispersion, environmental effects and potential health hazard associated with the low altitude gas plume of Masaya volcano, Nicaragua. Bull Volcanol 64:423–434. doi:10.1007/s00445-002-0221-6 CrossRefGoogle Scholar
  17. Delmelle P, Delfosse T, Delvaux B (2003) Sulfate, chloride and fluoride retention in Andosols exposed to volcanic acid emissions. Environ Pollut 126:445–457. doi:10.1016/S0269-7491(03)00196-9 CrossRefGoogle Scholar
  18. Duffell HJ, Oppenheimer C, Pyle DM, Galle B, McGonigle AJS, Burton MR (2003) Changes in gas composition prior to a minor explosive eruption at Masaya volcano, Nicaragua. J Volcanol Geotherm Res 126:327–339. doi:10.1016/S0377-0273(03)00156-2 CrossRefGoogle Scholar
  19. Ehinger LH, Parker GR (1979) Tolerance of Andropogon Scoparius to copper and zinc. New Phytol 83:175–180CrossRefGoogle Scholar
  20. Epstein E (1999) Silicon. Annu Rev Plant Phys 50:641–664CrossRefGoogle Scholar
  21. Gonzalez-Chavez MC, Carrillo-Gonzalex R, Gutierrez-Castorena MC (2009) Natural attenuation in slag heap contaminated with cadmium: the role of plants and arbuscular mycorrhizal fungi. J Haz Mat 161:1288–1298. doi:10.1016/j.jhazmat.2008.04.110 CrossRefGoogle Scholar
  22. Gu LH, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003) Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299:2035–2038. doi:10.1126/science.1078366 CrossRefGoogle Scholar
  23. Harrison RM, Smith DJT, Luhana L (1996) Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ Sci Technol 30:825–832. doi:10.1021/es950252d CrossRefGoogle Scholar
  24. Harrison RM, Deacon AR, Jones MR, Appleby RS (1997) Sources and processes affecting concentrations of PM10 and PM2.5 particulate matter in Birmingham (UK). Atmos Environ 31:4103–4117. doi:10.1016/S1352-2310(97)00296-3 CrossRefGoogle Scholar
  25. Horrocks L, Burton M, Francis P, Oppenheimer C (1999) Stable gas plume composition measured by OP-FTIR spectroscopy at Masaya volcano, Nicaragua, 1998–1999. Geophys Res Lett 26:3497–3500. doi:10.1029/1999GL008383 CrossRefGoogle Scholar
  26. Jolley DW, Widdowson M, Self S (2008) Volcanogenic nutrient fluxes and plant ecosystems in large igneous provinces: an example from the Columbia River Basalt Group. J Geol Soc Lond 165:955–966. doi:10.1144/0016-76492006-199 CrossRefGoogle Scholar
  27. Kabata-Pendias A (2001) Trace elements in soils and plants. CRC, Boca RatonGoogle Scholar
  28. Kabata-Pendias A (2004) Soil-plant transfer of trace elements—an environmental issue. Geoderma 122:143–149. doi:10.1016/j.geoderma.2004.01.004 CrossRefGoogle Scholar
  29. Kern C, Sihler H, Vogel L, Rivera C, Herrera M, Platt U (2009) Halogen oxide measurements at Masaya volcano, Nicaragua using Active Long Path Differential Optical Absorption Spectroscopy. Bull Volcanol 71:659–670. doi:10.1007/s00445-008-0252-8 CrossRefGoogle Scholar
  30. Langmann B, Zaksek K, Hort M, Duggen S (2010) Volcanic ash as fertiliser for the surface ocean. Atmos Chem Phys Discuss 10:711–734CrossRefGoogle Scholar
  31. Margui E, Queralt I, Carvalho ML, Hidalgo M (2005) Comparison of EDXRF and ICP-OES after microwave digestion for element determination in plant specimens from an abandoned mining area. Anal Chim Acta 549:197–204. doi:10.1016/j.aca.2005.06.035 CrossRefGoogle Scholar
  32. Martin RS, Mather TA, Pyle DM, Watt SFL, Day JA, Collins SJ, Wright TE, Aiuppa A, Calabrese S (2009a) Sweet chestnut (Castanea sativa) leaves as a bio-indicator of volcanic gas, aerosol and ash deposition on the flanks of Mt Etna in 2005–2007. J Volcanol Geotherm Res 179:107–119. doi:10.1016/j.jvolgeores.2008.10.012 CrossRefGoogle Scholar
  33. Martin RS, Watt SFL, Pyle DM, Mather TA, Matthews NE, Georg RB, Day JA, Fairhead T, Witt MLI, Quayle BM (2009b) Environmental effects of ashfall in Argentina from the 2008 Chaitén volcanic eruption. J Volcanol Geotherm Res 184:462–472. doi:10.1016/j.jvolgeores.2009.04.010 CrossRefGoogle Scholar
  34. Martin RS, Mather TA, Pyle DM, Power M, Tsanev VI, Oppenheimer C, Allen AG, Horwell CJ, Ward EPW (2009c) Size distributions of fine silicate and other particles in Masaya’s volcanic plume. J Geophys Res 114:D09217. doi:10.1029/2008JD011211 CrossRefGoogle Scholar
  35. Mather TA, Allen AG, Oppenheimer C, Pyle DM, McGonigle AJS (2003) Size-resolved characterisation of soluble ions in the particles in the tropospheric plume of Masaya volcano, Nicaragua: origins and plume processing. J Atmos Chem 46:207–237. doi:10.1023/A:1026327502060 CrossRefGoogle Scholar
  36. Mather TA, Pyle DM, Tsanev VI, McGonigle AJS, Oppenheimer C, Allen AG (2006) A reassessment of current volcanic emissions from the Central American arc with specific examples from Nicaragua. J Volcanol Geotherm Res 149:297–311. doi:10.1016/j.jvolgeores.2005.07.021 CrossRefGoogle Scholar
  37. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol 154:29–43CrossRefGoogle Scholar
  38. Moune S, Faure F, Gauthier P-J, Sims KWW (2007) Pele’s hairs and tears: natural probe of volcanic plume. J Volcanol Geotherm Res 164:244–253. doi:10.1016/j.jvolgeores.2007.05.007 CrossRefGoogle Scholar
  39. Moune S, Gauthier P-J, Delmelle P (2010) Trace elements in the particulate phase of the plume of Masaya Volcano, Nicaragua. J Volcanol Geotherm Res (in press)Google Scholar
  40. Notcutt G, Davies F (1989a) The environmental influence of a volcanic plume, a new technique of study, Mount-Etna, Sicily. Environ 14:209–212. doi:10.1007/BF01705133 Google Scholar
  41. Notcutt G, Davies F (1989b) Accumulation of volcanogenic fluoride by vegetation—Mt Etna, Sicily. J Volcanol Geotherm Res 39:329–333. doi:10.1016/0377-0273(89)90096-6 CrossRefGoogle Scholar
  42. Notcutt G, Davies F (1993) Dispersion of gaseous volcanogenic fluoride, island of Hawaii. J Volcanol Geotherm Res 56:125–131. doi:10.1016/0377-0273(93)90054-U CrossRefGoogle Scholar
  43. Notcutt G, Davies F (1999) Biomonitoring of volcanogenic fluoride, Furnas Caldera, Sao Miguel, Azores. J Volcanol Geotherm Res 92:209–214. doi:10.1016/S0377-0273(99)00077-3 CrossRefGoogle Scholar
  44. Nriagu J (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49. doi:10.1038/338047a0 CrossRefGoogle Scholar
  45. Percy KE, Baker EA (1988) Effects of simulated acid rain on leaf wettability, rain retention and uptake of some inorganic ions. New Phytol 108:75–82CrossRefGoogle Scholar
  46. Pyle DM, Mather TA (2003) The importance of volcanic emissions in the global atmospheric mercury cycle. Atmos Environ 37:5115–5124. doi:10.1016/j.atmosenv.2003.07.011 CrossRefGoogle Scholar
  47. Quayle BM, Mather TA, Witt MLI, Maher BA, Mitchell R, Martin RS, Calabrese S (2010) Application and evaluation of biomagnetic monitoring of volcanically-derived particles at Mt Etna, Italy. J Volcanol Geotherm Res 191:107–116. doi:10.1016/j.jvolgeores.2010.01.004 CrossRefGoogle Scholar
  48. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  49. Rymer H, van Wyk de Vries B, Stix J, Williams-Jones G (1998) Pit crater structure and processes governing persistent activity at Masaya Volcano, Nicaragua. Bull Volcanol 59:345–355. doi:10.1007/s004450050196 CrossRefGoogle Scholar
  50. Smith WH (1990) Air pollution and forests: interaction between air contaminants and forest ecosystem, 2nd edn. Springer-Verlag, New YorkGoogle Scholar
  51. Staudacher T, Ferrazzini V, Peltier A, Kowalski P, Boisser P, Catherine P, Lauret F, Massin F (2009) The April 2007 eruption and the Dolomieu crater collapse, two major events at Piton de la Fournaise (La Réunion Island, Indian Ocean). J Volcanol Geotherm Res 184:126–137. doi:10.1016/j.jvolgeores.2008.11.005 CrossRefGoogle Scholar
  52. Stoiber RE, Williams SN, Huebert BJ (1986) Sulfur and halogen gases at Masaya caldera complex, Nicaragua: total flux and variations with time. J Geophys Res 91:12,215–12:231. doi:10.1029/JB091iB12p12215 CrossRefGoogle Scholar
  53. Tilling RI, Topinka L, Swanson DA (1990) Eruptions of Mount St Helens: past, present, and future, US Geol Surv Spec Int Pub, pp 1–56Google Scholar
  54. Toutain JP, Aloupogiannis P, Delorme H, Person A, Blanc P, Robaye G (1990) Vapor deposition of trace elements from degassed basaltic lava, Piton de la Fournaise volcano, Reunion Island. J Volcanol Geotherm Res 40:257–268. doi:10.1016/0377-0273(90)90124-X CrossRefGoogle Scholar
  55. Toutain JP, Baubron J-C, Francois L (2002) Runoff control of soil degassing at an active volcano. The case of Piton de la Fournaise, Reunion Island. Earth Planet Sci Lett 197:83–94. doi:10.1016/S0012-821X(02)00467-3 CrossRefGoogle Scholar
  56. Vallelonga P, Mather TA (2003) Lead (Pb) fluxes and Pb isotopic compositions from Masaya volcano, Nicaragua. Atmos Environ 37:4453–4460. doi:10.1016/S1352-2310(03)00580-6 CrossRefGoogle Scholar
  57. Watt SFL, Pyle DM, Mather TA, Day JA, Aiuppa A (2007) The use of tree-rings and foliage as an archive of volcanogenic cation deposition. Environ Pollut 148:48–61. doi:10.1016/j.envpol.2006.11.007 CrossRefGoogle Scholar
  58. Witt MLI, Mather TA, Pyle DM, Aiuppa A, Bagnato E, Tsanev VI (2008) Mercury and halogen emissions from Masaya and Telica volcanoes, Nicaragua. J Geophys Res 113:B06203. doi:10.1029/2007JB005401 CrossRefGoogle Scholar
  59. Wu S, Zhao Y-H, Feng X, Wittmeir A (1996) Application of inductively coupled plasma mass spectrometry for total metal determination in silicon-containing solid samples using the microwave-assisted nitric acid- hydrofluoric acid-hydrogen peroxide- boric acid digestion system. J Anal Atom Spectrom 11:287–296. doi:10.1039/JA9961100287 CrossRefGoogle Scholar
  60. Yuan JG, Fang W, Fan L, Chen Y, Wang DQ, Yan ZY (2006) Soil formation and vegetation establishment on the cliff face of abandoned quarries in the early stages of natural colonization. Restor Ecol 14:349–356. doi:10.1111/j.1526-100X.2006.00143.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • R. S. Martin
    • 1
    • 2
  • T. A. Mather
    • 3
  • D. M. Pyle
    • 3
  • J. A. Day
    • 2
  • M. L. I. Witt
    • 3
  • S. J. Collins
    • 4
  • R. G. Hilton
    • 5
  1. 1.School of Biological and Chemical SciencesQueen MaryUniversity of LondonUK
  2. 2.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  3. 3.Department of Earth SciencesUniversity of OxfordOxfordUK
  4. 4.Department of Earth SciencesUniversity of DurhamDurhamUK
  5. 5.Department of GeographyUniversity of DurhamDurhamUK

Personalised recommendations