Bulletin of Volcanology

, Volume 72, Issue 8, pp 933–944 | Cite as

Runout of the Socompa volcanic debris avalanche, Chile: a mechanical explanation for low basal shear resistance

  • Tim DaviesEmail author
  • Mauri McSaveney
  • Karim Kelfoun
Research Article


We propose a mechanical explanation for the low basal shear resistance (about 50 kPa) previously used to simulate successfully the complex, well-documented deposit morphology and lithological distribution produced by emplacement of the 25 km3 Socompa volcanic debris avalanche deposit, Chile. Stratigraphic evidence for intense basal comminution indicates the occurrence of dynamic rock fragmentation in the basal region of this large granular mass flow, and we show that such fragmentation generates a basal shear stress, retarding motion of the avalanche, that is a function of the flow thickness and intact rock strength. The topography of the Socompa deposit is realistically simulated using this fragmentation-derived resistance function. Basal fragmentation is also compatible with the evidence from the deposit that reflection of the avalanche from topography caused a secondary wave that interacted with the primary flow.


Volcanic debris avalanche Socompa deposit Runout simulation Dynamic fragmentation Retarding stress Debris avalanche reflection Deposit morphology 



proportion (by volume) of grains fragmenting simultaneously

k1, k2


O[ ]

of the order of


minimum value needed to cause fragmentation


spatially-averaged effective intergranular direct stress within the fragmenting layer


apparent fragmenting pressure


spatially-averaged fragmentation pressure in the fragmenting layer; mean longitudinal fragmentation pressure.


direct stress on the top of the fragmenting layer


frictional resistance in a fragmenting granular flow


intact static compressive strength


dynamic friction coefficient



We gratefully acknowledge constructive reviews by Charles Campbell, Emily Brodsky and Jeremy Phillips.


  1. Abe S, Mair K (2005) Grain fracture in 3D numerical simulations of granular shear. Geophys Res Lett 32:doi: 10.1029/2004GL022123
  2. Benz W, Ausphaug E (1995) Simulations of brittle solids using smooth particle hydrodynamics. Comput Phys Commun 87:253–265CrossRefGoogle Scholar
  3. Bergstrom BH (1963) Energy and size distribution aspects of single particle crushing. In: Fairhurst C (ed) Rock mechanics. Proc 5th Symposium Rock Mech 1962. Pergamon Press, New York, pp 155–172Google Scholar
  4. Bourne N, Millett J, Rosenberg Z, Murray N (1998) On the shock induced failure of brittle solids. J Mech Phys Sol 46:1887–1908CrossRefGoogle Scholar
  5. Byerlee J (1978) Friction of rocks. PAGEOPH 116:615–626CrossRefGoogle Scholar
  6. Campbell CS (1989) Self-lubrication for long-runout landslides. J Geol 97:653–665CrossRefGoogle Scholar
  7. Campbell CS (2006) Granular material flows—an overview. Powder Technol 162:208–229CrossRefGoogle Scholar
  8. Campbell CS, Brennen CE (1985) Computer simulation of granular shear flows. J Fluid Mech 151:167–188CrossRefGoogle Scholar
  9. Cocco M, Spudich P, Tinti E (2006) On the mechanical work absorbed on faults during earthquake ruptures. Earthquakes: Radiated Energy and the Physics of Faulting. Geophysical Monograph Series, 170: AGU doi: 10.1029/170GM24
  10. Crandell DR, Glicken HX, Christiansen RL, Newhall CG (1984) Catastrophic debris avalanche from ancestral Mt Shasta volcano, California. Geology 12:143–146CrossRefGoogle Scholar
  11. Crosta GB, Frattini P, Fusi N (2007) Fragmentation in the Val Pola rock avalanche, Italian Alps. Geophys Res 112:F01006. doi: 10.1029/2005FJ000455 CrossRefGoogle Scholar
  12. Crosta GB, Imposimato S, Roddeman D (2009) Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng Geol 109:135–145. doi: 10.1016/j.enggeo.2008.10.004 CrossRefGoogle Scholar
  13. Dade WB, Huppert HE (1998) Long-runout rockfalls. Geology 26:803–806CrossRefGoogle Scholar
  14. Davies TRH, McSaveney MJ (2002) Dynamic simulation of the motion of fragmenting rock avalanches. Can Geotech J 39:789–798CrossRefGoogle Scholar
  15. Davies TRH, McSaveney MJ (2009) The role of dynamic rock fragmentation in reducing frictional resistance to large landslides. Eng Geol 109:67–79. doi: 10.1016/j.enggeo.2008.11.004 CrossRefGoogle Scholar
  16. Davies TRH, Phillips CJ, Pearce AJ, Zhang, XB (1992) “Debris flow behaviour—an integrated overview”. In Debris Flows and Environment in Mountain Regions, DE Walling, TRH Davies and B Hasholt (eds). IAHS Publication No. 209, pp 217–225Google Scholar
  17. Davies TRH, McSaveney MJ, Beetham RD (2006) Rapid block glides—slide-surface fragmentation in New Zealand’s Waikaremoana landslide. Q J Eng Geol Hydrogeol 39:115–129CrossRefGoogle Scholar
  18. Davies TRH, McSaveney MJ, Deganutti AM (2007) Dynamic rock fragmentation causes low rock-on-rock friction. In: Eberhardt E, Stead D, Morrison T (eds) Rock Mechanics—meeting society’s challenges and demands. Taylor and Francis, London, pp 959–966CrossRefGoogle Scholar
  19. Dlott DD (1999) Ultrafast spectroscopy of shock waves in molecular materials. Ann Rev Phys Chem 50:251–278CrossRefGoogle Scholar
  20. Dufresne AM, Davies TRH (2009) Longitudinal ridges in mass movement deposits. Geomorph 105:171–181. doi: 10.1016/j.geomorph.2008.09.009 CrossRefGoogle Scholar
  21. Dufresne AM, Davies TRH, McSaveney MJ (2009) Influence of runout path material on the emplacement of the Round Top rock avalanche, New Zealand. Earth Surf Proc doi: 10.1002/esp.1900
  22. Dunning SA (2004) Rock Avalanches in high mountains. PhD thesis, Luton Univ. UK, 271 p + AppGoogle Scholar
  23. Edwards DA (1993) Turbidity currents: dynamics, deposits and reversals. Lect Notes Earth Sci 44:1–173CrossRefGoogle Scholar
  24. Glicken HX (1996) Rockslide-debris avalanche of May 18, 1980, Mt St Helens volcano, Washington. US Geol Surv Open-file Report 96–677, p 90Google Scholar
  25. Grady DE, Kipp ME (1987) Dynamic rock fragmentation. In fracture mechanics of rock. Academic Press, London, UK, pp 429–475Google Scholar
  26. Herget G (1988) Stresses in rock. Balkema, Rotterdam, p 179Google Scholar
  27. Hewitt K (2003) Rock avalanches with complex runout and emplacement, Karakoram Himalaya, Inner Asia. In Evans SG, Martino S (Eds) NATO Advanced Research Workshop: Massive rock slope failure: New Models for hazard assessment. Celano, Italy, June 16–21, 2002Google Scholar
  28. Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard areas. Bull Geol Soc Amer 110:972–984CrossRefGoogle Scholar
  29. Kelfoun K, Druitt TH (2005) Numerical modelling of the Socompa rock avalanche, Chile. J Geophys Res 110:B12202. doi: 10.1029/2005JB003758 CrossRefGoogle Scholar
  30. Kelfoun K, Druitt T, van Wyk de Vries B, Guilbaud M-N (2008) Topographic reflection of the Socompa debris avalanche, Chile. Bull Volcanol 70:1169–1187. doi: 10.1007/s00445-008-0201-6 CrossRefGoogle Scholar
  31. Kelfoun K, Samaniego P, Palacios P, Barba D (2009) Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador). Bull Volcanol 71:1057–1075. doi: 10.1007/s00445-009-0286-6 CrossRefGoogle Scholar
  32. Kobayashi R (1970) On mechanical behaviours of rocks under various loading rates. Rock Mech Jpn 1:56–58Google Scholar
  33. Kuelen N, Heilbronner R, Stünitz A, Bouiller A-M, Ito H (2007) Grain size distributions of fault rocks: a comparison between experimentally and naturally-formed granitoids. J Struct Geol 29:1282–1300CrossRefGoogle Scholar
  34. Le Corvec N (2005) Socompa volcano destabilisation (Chile) and fragmentation of debris avalanches. MSc thesis, Université Blaise Pascal, Clermont-Ferrand, France, p 67Google Scholar
  35. Locat P, Couture R, Leroueil S, Locat J, Jaboyedoff M (2006) Fragmentation energy in rock avalanches. Can Geotech J 43:830–851CrossRefGoogle Scholar
  36. Mair K, Abe S (2008) 3D numerical simulations of fault gouge evolution during shear: Grain size reduction and strain localization. Earth Plan Sci Lett 274:72–81CrossRefGoogle Scholar
  37. McGarr A (1997) A mechanism for high wall-rock velocities in rockbursts. PAGEOPH 150:381–391CrossRefGoogle Scholar
  38. McSaveney MJ, Davies TRH (2007) Rockslides and their motion. In: Sassa K, Fukuoka H, Wang F, Wang G (eds), Progress in landslide science. Springer-Verlag, pp 113–134Google Scholar
  39. McSaveney MJ, Davies TRH (2009) Surface energy is not one of the energy losses in rock comminution. Eng Geol 109:109–113. doi: 10.1016/j.enggeo.2008.11.001 CrossRefGoogle Scholar
  40. McSaveney MJ, Davies TRH, Hodgson KA (2000) A contrast in deposit style and process between large and small rock avalanches. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in Research, Theory and Practice, Proc 8th Int Symp Landslides, Cardiff, Wales. Thomas Telford Publishing, London, pp 1053–1058Google Scholar
  41. Pirulli M (2009) The Thurwieser rock avalanche (Italian Alps): description and dynamic analysis. Eng Geol 109:80–92. doi: 10.1016/j.enggeo.2008.10.007 CrossRefGoogle Scholar
  42. Reches Z, Dewers TA (2005) Gouge formation by dynamic pulverization during earthquake rupture. Earth Plan Sci Lett 235:361–374CrossRefGoogle Scholar
  43. Rice JR (2006) Heating and weakening of faults during earthquake slip. J Geophys Res 111:B05311. doi: 10.1029/2005JB004006 CrossRefGoogle Scholar
  44. Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits and associated eruptions. J Volcanol Geotherm Res 22:163–197CrossRefGoogle Scholar
  45. Stewart S (2007) Rock mass strength and deformability of unweathered closely jointed New Zealand greywacke. Unpubl. PhD thesis, University of Canterbury, New Zealand, p 455Google Scholar
  46. Stoops GR, Sheridan MF (1992) Giant debris avalanches from the Colima volcanic complex, Mexico: implications for long-runout landslides (> 100 km) and hazard assessment. Geology 20:299–302CrossRefGoogle Scholar
  47. Takarada S, Ui T, Yamamoto Y (1999) Depositional features and transportation mechanism of valley-filling Iwasegawa and Kaida debris avalanches, Japan. Bull Volcanol 60:508–522CrossRefGoogle Scholar
  48. Wyk V, de Vries B, Self S, Francis PW, Keszthelyi L (2001) A gravitational spreading origin for the Socompa debris avalanche. J Volcanol Geotherm Res 105:225–247CrossRefGoogle Scholar
  49. Voight B, Glicken HX, Janda RJ, Douglas PM (1981) Catastrophic rockslide-avalanche of May 18 1980. In: Lipman PW, Mullineaux DR (eds), The 1980 Eruption of Mt St Helens, Washington. US Geol Surv Prof Paper 1250, pp 347–37Google Scholar
  50. Wadge G, Francis PW, Ramirez CF (1995) The Socompa collapse and avalanche event. J Volcanol Geotherm Res 66:309–336CrossRefGoogle Scholar
  51. Zeleny RA, Piret EL (1962) Dissipation of energy in single particle crushing. Ind Eng Chem Process Des Dev 1:37–41. doi: 10.1021/i260001a007;PublicationDate(Web):01May2002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Geological SciencesUniversity of CanterburyChristchurchNew Zealand
  2. 2.GNS Science LtdLower HuttNew Zealand
  3. 3.Laboratoire Magmas et Volcans, OPGC, UMR Clermont Université-CNRS-IRDClermont-FerrandFrance

Personalised recommendations