Bulletin of Volcanology

, Volume 72, Issue 7, pp 771–789 | Cite as

Structural analysis of the early stages of catastrophic stratovolcano flank-collapse using analogue models

  • S. Daniel AndradeEmail author
  • Benjamin van Wyk de Vries
Research Article


Many major volcanic flank collapses involve the failure of low-angle strata in or under the edifice. Such failures produce voluminous, destructive debris avalanches that are a major volcanic hazard. At Socompa, Las Isletas-Mombacho and Parinacota volcanoes, field studies have shown that during catastrophic flank collapse a significant segment of their substrata was detached and expelled from beneath the volcanic edifice and formed a mobile basal layer on which the sliding flanks were transported. Previous studies have proposed that gravitational flank spreading was likely involved in the onset of sudden substrata failure. The early stages of this particular type of flank collapse can be modelled under laboratory conditions using analogue models. This allows us to study the development of structures accommodating early deformation of the sliding flank during catastrophic collapse. In the experiments, the detached substratum segment (low-viscosity basal layer) was modelled with a silicone layer, and the overlying stratovolcano with a layered sand cone. The first structure developed in the models is a graben rooted in the low-viscosity basal layer. This graben forms the limits of the future avalanche-amphitheatre and divides the sliding flank into a ‘toreva’ domain (upper sliding flank) and a ‘hummock’ domain (lower sliding flank). These domains display distinctive structural patterns and kinetic behaviour. Normal faults develop in the toreva domain and inside the graben, while the hummock domain is characterised by transtensional structures. The hummock domain also over-thrusts the lower amphitheatre sides, which allows subsequent sideways avalanche spreading. Measurements show that horizontal speeds of the hummock domain are always higher than that of the toreva domain during model collapse. The main role played by the low-viscosity basal layer during this type of collapse is to control the size, shape and structural complexity of the sliding flank; it also transmits mass and momentum from the toreva to the hummock domain.


Flank collapse Stratovolcano Analogue models Early stage Structures 



D. Andrade was supported by the Secretaría Nacional para la Ciencia y la Tecnología (SENACYT-Ecuador), the French Ministry of Foreign Affairs through the French Embassy in Ecuador, and the Institut de Recherche pour le Développement (IRD, France). We thank Benjamin Bernard, Alberto de la Fuente and the reviewers William Chadwick and Tim Davies for their critical remarks on the original manuscript.


  1. Acocella V (2005) Modes of sector collapse of volcanic cones: Insights from analogue experiments. J Geophys Res 110:B02205. doi: 10.1029/2004JB003166 CrossRefGoogle Scholar
  2. Afrouz AA (1992) Practical handbook of rock mass classification systems and modes of ground failure. CRC, LondonGoogle Scholar
  3. Ando M (1979) The Hawaii earthquake of November 29, 1975: low dip angle faulting due to forceful injection of magma. J Geophys Res 84:7616–7626CrossRefGoogle Scholar
  4. Bell FG (2000) Engineering properties of soils and rocks, 4th edn. Blackwell, OxfordGoogle Scholar
  5. Borgia A (1994) Dynamic basis for volcanic spreading. J Geophys Res 99:17, 791-17,804CrossRefGoogle Scholar
  6. Borgia A, Ferrari L, Pasquaré G (1992) Importance of gravitational spreading in the tectonic and volcanic evolution of Mt. Etna Nature 357:231–235CrossRefGoogle Scholar
  7. Borgia A, Tizzani P, Solaro G, Manzo M, Casu F, Luongo G, Pepe A, Bernardino P, Fornaro G, Sansosti E, Ricciardi GP, Fusi N, Di Donna G, Lanari R (2005) Volcanic spreading of Vesuvius, a new paradigm for interpreting its volcanic activity. Geophys Res Lett 32:L03303. doi: 10.1029/2004GL022155 CrossRefGoogle Scholar
  8. Carracedo JC, Day SJ, Guillou H, Perez Torrado FJ (1999) Giant Quaternary landslides in the evolution of La Palma and El Hierro, Canary Islands. J Volcanol Geotherm Res 94:169–190CrossRefGoogle Scholar
  9. Clavero JE, Sparks RSJ, Huppert HE, Dade WB (2002) Geological constraints on the emplacement mechanism of the Parinacota debris avalanche, Northern Chile. Bull Volcanol 64:40–54CrossRefGoogle Scholar
  10. Dade WB, Huppert HE (1998) Long-runout rockfalls. Geology 26:803–806CrossRefGoogle Scholar
  11. Delcamp A, van Wyk de Vries B, James M (2008) The influence of edifice slope and substrata on volcano spreading. J Volcanol Geotherm Res 177:925–943CrossRefGoogle Scholar
  12. Donnadieu F, Merle O (1998) Experiments on the indentation process during cryptodome intrusions: New insights into Mount St. Helens deformation. Geology 26:79–82CrossRefGoogle Scholar
  13. Elsworth D, Voight B (1996) Evaluation of volcano flank instability triggered by dike intrusion. In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the Earth and other planets. Geol Soc London Spec Pub 110:45–53Google Scholar
  14. Gorshkov GS (1959) Gigantic eruption of Volcano Bezymianny. Bull Volcanol 20:77–109CrossRefGoogle Scholar
  15. Hubbert MK (1937) Theory of scale models as applied to the study of geologic structrures. Geol Soc Am Bull 48:1459–1520Google Scholar
  16. Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res 110:B12202. doi: 10.1029/2005JB003758 CrossRefGoogle Scholar
  17. Kelfoun K, Druitt TH, van Wyk de Vries B, Guilbaud MN (2008) Topographic reflection of the Socompa debris avalanche, Chile. Bull Volcanol 70:1169–1187CrossRefGoogle Scholar
  18. Lagmay AMF, van Wyk de Vries B, Kerle N, Pyle DM (2000) Volcano instability induced by strike slip-faulting. Bull Volcanol 62:331–346CrossRefGoogle Scholar
  19. Lopez DL, Williams SN (1993) Catastrophic volcanic collapse. Relation to hydrothermal processes. Science 260:1, 794–1,796Google Scholar
  20. Merle O, Borgia A (1996) Scaled experiments of volcanic spreading. J Geophys Res 101:13, 805–13,817CrossRefGoogle Scholar
  21. Montaldo A, Vinciguerra S, Menza Z, Patane G (1996) Recent seismicity of Mount Etna: implications for flank instability. In: McGuire WJ, Jones AP, Neuberg J (Eds) Volcano instability on the Earth and other planets. Geol Soc London Spec Pub 110:169–177Google Scholar
  22. Moore JG, Clague DA, Holcomb RT, Lipman PW, Normark WR, Torresan ME (1989) Prodigious submarine landslides on the Hawaiian Ridge. J Geophys Res 94:465–17,484Google Scholar
  23. Morgan JK, Moore JG, Clague DA (2003) Slope failure and volcanic spreading along the submarine south flank of Kilauea volcano, Hawaii. J Geophys Res 108:2415. doi: 10.1029/2003JB002411 CrossRefGoogle Scholar
  24. Oehler J-F, van Wyk de Vries B, Labazuy P, Lénat J-F (2004) Gravitational destabilization of oceanic shield volcanoes on Low Strength Layers (LSL): an analogue modeling approach. J Volcanol Geotherm Res 144:169–189CrossRefGoogle Scholar
  25. Reiche P (1937) The toreva-block—a distinctive landslide type. J Geol 45:538–548CrossRefGoogle Scholar
  26. Reid ME, Sisson TW, Brien DL (2001) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology 29:779–782CrossRefGoogle Scholar
  27. Shea T, van Wyk de Vries B (2008) Structural analysis and analogue modelling of the kinematics and dynamics of large-scale rock avalanches. Geosphere 4:657–686CrossRefGoogle Scholar
  28. Shea T, van Wyk de Vries B, Pilato M (2008) Emplacement mechanisms of contrasting debris avalanches at Volcán Mombacho (Nicaragua), provided by structural and facies analysis. Bull Volcanol 70:899–921CrossRefGoogle Scholar
  29. Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197CrossRefGoogle Scholar
  30. Siebert L, Glicken H, Ui T (1987) Volcanic hazards form Bezymianny- and Bandai-type eruptions. Bull Volcanol 49:435–459CrossRefGoogle Scholar
  31. Sousa J, Voight B (1995) Multiple-pulsed debris avalanche emplacement at Mount St. Helens in 1980: Evidence from numerical continuum flow similations. J Volcanol Geotherm Res 66:227–250CrossRefGoogle Scholar
  32. Szakács A, Krézsek C (2006) Volcano-basement interaction in the Eastern Carpathians: Explaining unusual tectonic features in the Eastern Transylvanian basin, Romania. J Volcanol Geotherm Res 158:6–20CrossRefGoogle Scholar
  33. Tibaldi A (2001) Multiple sector collapses at Stromboli volcano, Italy: how they work. Bull Volcanol 63:112–125CrossRefGoogle Scholar
  34. Ui T (1983) Volcanic dry avalanche deposits—identification and comparison with non-volcanic debris stream deposits. J Volcanol Geotherm Res 18:135–150CrossRefGoogle Scholar
  35. van Bemellen RW (1949) The geology of Indonesia: general geology of Indonesia and adjacent archipelagoes. Government Printing Office, The HagueGoogle Scholar
  36. van Wyk de Vries B, Borgia A (1996) The role of basement in volcano deformation. In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the Earth and other planets. Geol Soc London Spec Pub 110:95–110Google Scholar
  37. van Wyk de Vries B, Francis PW (1997) Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading. Nature 387:387–390CrossRefGoogle Scholar
  38. van Wyk de Vries B, Kerle N, Petley D (2000) Sector collapse forming at Casita volcano, Nicaragua. Geology 28:167–170CrossRefGoogle Scholar
  39. van Wyk de Vries B, Matela R (1998) Styles of volcano-induced deformation: numerical models of substratum flexure, spreading and extrusion. J Volcanol Geotherm Res 81:1–18CrossRefGoogle Scholar
  40. van Wyk de Vries B, Self S, Francis PW, Keszthelyi L (2001) A gravitational spreading origin for the Socompa debris avalanche. J Volcanol Geotherm Res 105:225–247CrossRefGoogle Scholar
  41. Vidal N, Merle O (2000) Reactivation of basement faults beneath volcanoes: a new model of flank collapse. J Volcanol Geotherm Res 99:9–26CrossRefGoogle Scholar
  42. Voight B (1981) Time scale for the first moments of the May 18 eruption. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250:69–86Google Scholar
  43. Voight B, Glicken H, Janda RJ, Douglass PM (1981) Catastrophic rockslide avalanche of May 18. In: Lipman PW, Mullineaux DR (eds) The 1980 eruption of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250:347–377Google Scholar
  44. Wadge G, Francis PW, Ramirez CF (1995) The Socompa collapse and avalanche event. J Volcanol Geotherm Res 66:309–336CrossRefGoogle Scholar
  45. Weijemars R, Schmeling H (1986) Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modeling of rock flow due to gravity (including the concept of rheological similarity). Phys Earth Planet Int 43:316–330CrossRefGoogle Scholar
  46. Williams DL, Abrams G, Finn C, Dzurisin D, Johnson DJ, Denlinger R (1987) Evidence from gravity data for an intrusive complex beneath Mount St. Helens. J Geophys Res 92:207–10,222Google Scholar
  47. Wooller L, van Wyk de Vries B, Murray JB, Rymer H, Meyer S (2004) Volcano spreading controlled by dipping substrata. Geology 32:573–576CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • S. Daniel Andrade
    • 1
    • 2
    Email author
  • Benjamin van Wyk de Vries
    • 1
  1. 1.CNRS, IRD, Laboratoire Magmas et VolcansOPGC—Université Blaise PascalClermont-FerrandFrance
  2. 2.Instituto Geofísico, Escuela Politécnica NacionalQuitoEcuador

Personalised recommendations