Advertisement

Bulletin of Volcanology

, Volume 72, Issue 7, pp 859–870 | Cite as

Clinker formation in basaltic and trachybasaltic lava flows

  • Sébastien Loock
  • Benjamin van Wyk de VriesEmail author
  • Jean-Marc Hénot
Research Article

Abstract

Clinker is a term used to describe massive or scoriaceous fragments commonly associated with ‘a‘ā lava flows. Clinker is generally considered to form by fragmentation of an upper vesiculated crust, due to an increase in apparent viscosity and/or to an increase in shear strain rate. Surface clinker is considered to be transported to the flow front and incorporated at the base by caterpillar motion. Clinker that we have observed on a variety of lava flows has very variable textures, which suggests several different mechanisms of formation. In order to study clinker formation, we examined several lava flows from the Chaîne des Puys Central France, where good sections, surface morphology and surface textures are widespread and clearly visible. We observed basal and surface ‘a‘ā clinker that has fragmentation textures similar to those observed in ash formed in eruptions under dry conditions. In two pāhoehoe flows we have observed basal clinker that formed in-situ. Two other flows display clinker features identical to those commonly observed in phreatomagmatic ash, such as adhering particles, blocky shapes, spherical glass and attached microphenocrysts. Another pāhoehoe flow has a flakey, angular basal breccia, with microfaulted and abraded clasts. These were probably formed at a cooled lava base by large amounts of simple shear and consequent intra-lava brittle faulting. Using these observations we propose three different ways of fragmentation. (1) Clinker can form at the surface and eventually produce roll-over basal breccia. (2) Water/lava interactions can form basal clinker by phreatomagmatic fragmentation. Water/lava ratio variations may produce different clinker structures, in a manner similar to observed textural changes in phreatomagmatic eruptions. (3) Clinker can be formed by brittle brecciation during basal simple shear. The different clinker can provide information about the mechanisms and environmental conditions during lava flow emplacement.

Keywords

Lavas ‘a‘ā pāhoehoe Clinker Fragmentation Phreatomagmatism Shearing SEM 

Notes

Acknowledgements

We would like to thank especially Edgado Cañon-Tapia, Thordar Thordarson, Steve Self, Harry Pinkerton and Chris Kilburn, who all have provided inspiration at the outcrops during their visits to Clermont-Ferrand. Frances Garland provided a thorough review of the English. We thank also the anonymous reviewers.

References

  1. Alidibirov M, Dingwell DB (1996) High temperature fragmentation of magma by rapid decompression. Nature 380:146–149CrossRefGoogle Scholar
  2. Boivin P, Besson JC, Briot D, Camus G, Goër D, de Herve A, Gourgaud A, Labazuy Ph, De Larouzière FD, Livet M, Mergoil J, Miallier D, Morel JM, Vernet G, Vincent PM (2004) Volcanological map of the Chaîne des Puys, 4th edn. Parc naturel regional des volcans d’Auvergne, Clermont-FerrandGoogle Scholar
  3. Büttner R, Dellino P, Zimanowski B (1999) Identifying magma-water interaction from the surface features of ash particles. Nature 401:688–690CrossRefGoogle Scholar
  4. Büttner R, Dellino P, La Volpe L, Lorenz V, Zimanowski B (2002) Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from Molten Fuel Coolant Interaction experiments. J Geoph Res 107:2277. doi: 10.1029/ 2001JB000511 CrossRefGoogle Scholar
  5. Calvari S, Pinkerton H (1999) Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms. J Volcanol Geotherm Res 90:263–280CrossRefGoogle Scholar
  6. De Astis G, Dellino P, De Rosa R, La Volpe L (1997) Eruptive and emplacement mechanisms of widespread fine-grained pyroclastic deposits on Vulcano Island (Italy). Bull Volcanol 59:81–102Google Scholar
  7. Dellino P, Kyriakopoulos K (2003) Phreatomagmatic ash from the ongoing eruption of Etna reaching the Greek island of Cefalonia. J Volcanol Geotherm Res 126:341–345CrossRefGoogle Scholar
  8. Dellino P, Frazzetta G, La Volpe L (1990) Wet surge deposits at La Fossa di Vulcano: depositional and eruptive mechanisms. J Volcanol Geotherm Res 43:215–233CrossRefGoogle Scholar
  9. Dellino P, Isaia R, La Volpe L, Orsi G (2001) Statistical analysis of textural data from complex pyroclastic sequences: implications for fragmentation processes of the Agnano-Monte Spina Tephra (4.1 ka), Phlegrean Fields, southern Italy. Bull Volcanol 63:443–461CrossRefGoogle Scholar
  10. Dingwell DB, Webb SL (1990) Relaxation in silicate melts. Eur J Mineral 2:427–449Google Scholar
  11. Duraiswami RA, Dole G, Bondre N (2003) Slabby pāhoehoe from the western Deccan Volcanic Province: evidence for incipient pāhoehoe-‘a‘ā transitions. J Volcanol Geotherm Res 121:195–217CrossRefGoogle Scholar
  12. Giordano D, Russel JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134CrossRefGoogle Scholar
  13. Heiken G, Wohletz K (1985) Volcanic ash. University of California Press, BerkeleyGoogle Scholar
  14. Hess KU, Cordonnier B, Lavallée Y, Dingwell DB (2008) Viscous heating in rhyolite: an in situ experimental determination. Earth Planet Sci Lett 275:121–126CrossRefGoogle Scholar
  15. Hon K, Gansecki C, Kauahikaua J (2003) The transition from ‘a‘ā to pāhoehoe crust on flows emplaced during the Pu‘u ‘Ō‘ō-Kūpaianaha eruption. US Geol Surv Prof Paper 1676Google Scholar
  16. Kieffer G (1967) Nouvelles observations géologiques et morphologiques sur la région de Perrier et le Nord du Cézallier. Revue d’Auvergne 81:137–151Google Scholar
  17. Kiernan K, Wood C, Middleton G (2003) Aquifer structure and contamination risk in lava flows: insights from Iceland and Australia. Env Geol 43:852–865Google Scholar
  18. Kilburn CRJ (1981) Pāhoehoe and ‘a‘ā lavas; a discussion and continuation of the model of Peterson and Tilling. J Volcanol Geotherm Res 11:373–383CrossRefGoogle Scholar
  19. Kilburn CRJ (1993) Lava crust, ‘a‘ā flow lengthening and the pāhoehoe-‘a‘ā transition. In: Kilburn CRJ, Luongo G (eds) Active lava flows: monitoring and modelling. UCL, London, pp 263–280Google Scholar
  20. Kilburn CRJ (2000) Lava flows and flow fields. In: Sigurdson H, Haughton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 291–305Google Scholar
  21. Lescinsky DT, Merle O (2005) Extensional and compressional strain in lava flows and the formation of fractures in surface crust. Geol Soc Am Spec Pap 396:163–179Google Scholar
  22. Linneman SR, Borgia A (1993) The blocky andesitic lava flows of arenal Volcano, Costa Rica. In: Kilburn CRJ, Luongo G (eds) Active Lavas. UCL, London, pp 25–72Google Scholar
  23. Loock S, Diot H, van Wyk de Vries B, Launeau P, Merle O, Vadeboin F, Petronis MS (2009) Lava flow internal structure found from AMS and textural data: an example in methodology from the Chaîne des Puys, France. J Volcanol Geotherm Res 4:1092–1104Google Scholar
  24. Ly MH (1982) Le plateau de Perrier et la Limagne du Sud : Etudes volcanologiques et chronologiques des produits montdoriens (Massif Central Français). PhD thesis, University Blaise Pascal, Clermont FerrandGoogle Scholar
  25. MacDonald GA (1953) Pāhoehoe, ‘a‘ā and block lava. Am J Sci 251:169–191CrossRefGoogle Scholar
  26. Manley CR, Fink JH (1987) Internal textures of rhyolite flows as revealed by research drilling. Geology 15:549–552CrossRefGoogle Scholar
  27. Mueller S, Spieler O, Scheu B, Dingwell DB (2005) Permeability and degassing of dome lavas undergoing rapid decompression: an experimental determination. Bull Volcanol 67:526–538CrossRefGoogle Scholar
  28. Pégère G (2004) Les péridots de Perrier. Le Cahier des Micromonteurs 83:21–23Google Scholar
  29. Peterson DW, Tilling RT (1980) Transition of basaltic lava from pāhoehoe to ‘a‘ā, Kilauea volcano, Hawaii; field observations and key factors. J Volcanol Geotherm Res 7:271–293CrossRefGoogle Scholar
  30. Polacci M, Cashman KV, Kauahikaua J (1999) Textural characterization of the pāhoehoe-‘a‘ā transition in Hawaiian basalt. Bull Volcanol 60:595–609CrossRefGoogle Scholar
  31. Rowland SK, Walker GPL (1987) Toothpaste lava: characteristics and origin of a lava structural type between pāhoehoe and ‘a‘ā. Bull Volcanol 49:631–641CrossRefGoogle Scholar
  32. Self S, Keszthelyi L, Thordarson Th (1998) The importance of pāhoehoe. Ann Rev Earth Planet Sci 26:81–110CrossRefGoogle Scholar
  33. Smith JV (1996) Ductile-brittle transition structures in the basal shear zone of a rhyolite lava flow, eastern Australia. J Volcanol Geotherm Res 72:217–223CrossRefGoogle Scholar
  34. Soule SA, Cashman KV (2000) The mechanical properties of solidified polyethylene glycol 600, an analog for lava crust. J Volcanol Geotherm Res 129:139–153CrossRefGoogle Scholar
  35. Soule SA, Cashman KV (2005) Shear rate dependence of the pāhoehoe-to-‘a‘ā transition: analog experiments. Geol Soc Am Bull 33:361–364Google Scholar
  36. Spieler O, Kennedy B, Kueppers U, Dingwell DB, Scheu B, Taddeucci J (2004) A fragmentation threshold for the initiation and cessation of explosive eruptions. Earth Planet Sci Lett 226:139–148CrossRefGoogle Scholar
  37. Thonat A (1969) Les basanites noires de l’Est du Cézallier et la fossilisation de l’ancien réseau hydrographique de l’Allagnon. Rev Sci Nat D’Auvergne 1:2–24Google Scholar
  38. Tuffen H, Dingwell DB (2004) Fault textures in volcanic conduits: evidence for seismic trigger mechanisms during silicic eruptions. Bull Volcanol 67:370–387CrossRefGoogle Scholar
  39. Tuffen H, Dingwell DB, Pinkerton H (2003) Repetitive fracture and healing in silicic magmas: a link between flow banding and fossil earthquakes? Geology 31:1089–1092CrossRefGoogle Scholar
  40. Wohletz K, Heiken G (1992) Volcanology and geothermal energy. University of California Press, BerkeleyGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sébastien Loock
    • 1
  • Benjamin van Wyk de Vries
    • 1
    Email author
  • Jean-Marc Hénot
    • 1
  1. 1.Laboratoire Magmas et Volcans (CNRS UMR 6524), Observatoire du Physique du Globe de ClermontUniversité Blaise Pascal Clermont IIClermont-Ferrand CedexFrance

Personalised recommendations