Bulletin of Volcanology

, Volume 72, Issue 6, pp 735–746 | Cite as

Simulating bubble number density of rhyolitic pumices from Plinian eruptions: constraints from fast decompression experiments

  • Morihisa Hamada
  • Didier Laporte
  • Nicolas Cluzel
  • Kenneth T. Koga
  • Tatsuhiko Kawamoto
Research Article

Abstract

Decompression experiments of a crystal-free rhyolitic liquid with ≈ 6.6 wt. % H2O were carried out at a pressure range from 250 MPa to 30–75 MPa in order to characterize effects of magma ascent rate and temperature on bubble nucleation kinetics, especially on the bubble number density (BND, the number of bubbles produced per unit volume of liquid). A first series of experiments at 800°C and fast decompression rates (10–90 MPa/s) produced huge BNDs (≈ 2 × 1014 m−3 at 10 MPa/s ; ≈ 2 × 1015 m−3 at 90 MPa/s), comparable to those in natural silicic pumices from Plinian eruptions (1015–1016 m−3). A second series of experiments at 700°C and 1 MPa/s produced BNDs (≈ 9×1012 m−3) close to those observed at 800°C and 1 MPa/s (≈ 6 × 1012 m−3), showing that temperature has an insignificant effect on BNDs at a given decompression rate. Our study strengthens the theory that the BNDs are good markers of the decompression rate of magmas in volcanic conduits, irrespective of temperature. Huge number densities of small bubbles in natural silicic pumices from Plinian eruptions imply that a major nucleation event occurs just below the fragmentation level, at which the decompression rate of ascending magmas is a maximum (≥ 1 MPa/s).

Keywords

Rhyolite Pumice Degassing Bubble number density Decompression experiment 

Notes

Acknowledgments

All the experiments and analyses were carried out at the Laboratoire Magmas et Volcans, Clermont-Ferrand, France. We thank Jean-Marc Hénot for his assistance with the scanning electron microscope, Ariel Provost for the scientific guidance, and Jean-Louis Fruquière and Franck Pointud for their technical assistance in the laboratory. We also thank Atsushi Toramaru for his fruitful discussions and encouragements. The manuscript was improved by a careful review by Jim Gardner. This study was supported by both the JSPS Japan-France integrated action program (SAKURA 2006–2007 to T. Kawamoto and D. Laporte) and the Agence Nationale de la Recherche (ANR-EXPLANT, contract No ANR-05-CATT-0003 to C. Martel).

References

  1. Bagdassarov N, Dorfan A, Dingwell D (2000) Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt. Am Mineral 85:33–40Google Scholar
  2. Burgisser A, Gardner JE (2005) Experimental constraints on degassing and permeability in volcanic conduit flow. Bull Volcanol 67:42–56. doi: 10.1007/s00445-004-0359-5 CrossRefGoogle Scholar
  3. Cluzel N, Laporte D, Provost A, Kannewischer I (2008) Kinetics of heterogeneous bubble nucleation in rhyolitic melts: implications for the number density of bubbles in volcanic conduits and for pumice textures. Contrib Mineral Petrol 156:745–763. doi: 10.1007/s00410-008-0313-1 CrossRefGoogle Scholar
  4. Debenedetti PG (1996) Metastable liquids: concepts and principles. Princeton University Press, PrincetonGoogle Scholar
  5. Formenti Y, Druitt TH (2003) Vesicle connectivity in pyroclasts and implications for the fluidization of fountain-collapse pyroclastic flows, Montserrat (West Indies). Earth Planet Sci Lett 214:561–574. doi: 10.1016/S0012-821X(03)00386-8 CrossRefGoogle Scholar
  6. Gardner JE (2007) Bubble coalescence in rhyolitic melts during decompression from high pressure. J Volcanol Geotherm Res 166:161–176, 10.1016/j.jvolgeores.2007.07.006CrossRefGoogle Scholar
  7. Gardner JE, Denis MH (2004) Heterogeneous bubble nucleation on Fe-Ti oxide crystals in high-silica rhyolitic melts. Geochim Cosmochim Acta 68:3587–3597, 10.1016/j.gca.2004.02.021CrossRefGoogle Scholar
  8. Gardner JE, Hilton M, Carroll MR (1999) Experimental constraints on degassing of magma: isothermal bubble growth during continuous decompression from high pressure. Earth Planet Sci Lett 168:201–218. doi: 10.1016/S0012-821X(99)00051-5 CrossRefGoogle Scholar
  9. Higgins MD (2000) Measurement of crystal size distributions. Am Mineral 85:1105–1116Google Scholar
  10. Higgins MD (2002) Closure in crystal size distributions (CSD), verifications of CSD calculations, and significance of CSD fans. Am Mineral 87:171–175Google Scholar
  11. Hildreth EW (1979) The Bishop tuff: evidence for the origin of the compositional zonation in silicic magma chambers. Geol Soc Am Spec Pap 180:43–76Google Scholar
  12. Holtz F, Pichavant M, Barbey P, Johannes W (1992) Effects of H2O on liquidus phase relations in the haplogranite system at 2 and 5 kbar. Am Mineral 77:1223–1241Google Scholar
  13. Holtz F, Behrens H, Dingwell DB, Johannes W (1995) H2O solubility in haplogranitic melts: Compositional, pressure, and temperature dependence. Am Mineral 80:94–108Google Scholar
  14. Hurwitz S, Navon O (1994) Bubble nucleation in rhyolitic melts: experiments at high pressure, temperature and water content. Earth Planet Sci Lett 122:267–280. doi: 10.1016/0012-821X(94)90001-9 CrossRefGoogle Scholar
  15. Johnson MC, Anderson AT, Rutherford MJ (1994) Pre-eruptive volatile contents of magmas, in: Carroll MR, and Holloway JR (eds) Volatiles in magmas. Rev Mineral 30:281–323Google Scholar
  16. Klug C, Cashman KV, Bacon CR (2002) Structure and physical characteristics of pumice from the climatic eruption of Mount Mazama (Crater Lake), Oregon. Bull Volcanol 64:486–501. doi: 10.1007/s00445-002-0230-5 CrossRefGoogle Scholar
  17. Mangan M, Sisson T (2000) Delayed, disequilibrium degassing in rhyolitic magma: decompression experiments and implications for explosive volcanism. Earth Planet Sci Lett 183:441–455. doi: 10.1016/S0012-821X(00)00299-5 CrossRefGoogle Scholar
  18. Mangan M, Sisson T (2005) Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts. J Geophys Res 110:B01202. doi: 10.1029/2004JB003215 CrossRefGoogle Scholar
  19. Maaløe S (1985) Principles of igneous petrology. Springer-Verlag, BerlinGoogle Scholar
  20. Massol H, Koyaguchi T (2005) The effect of magma flow on nucleation of gas bubbles in a volcanic conduit. J Volcanol Geotherm Res 143:69–88, 10.1016/j.jvolgeores.2004.09.011CrossRefGoogle Scholar
  21. Mourtada-Bonnefoi CC, Laporte D (2002) Homogeneous bubble nucleation in rhyolitic magmas: an experimental study of the effect of H2O and CO2. J Geophys Res 107: ECV 2:1–19. doi: 10.1029/2001JB000290
  22. Mourtada-Bonnefoi CC, Laporte D (2004) Kinetics of bubble nucleation in a rhyolitic melt: an experimental study of the effect of ascent rate. Earth Planet Sci Lett 218:521–537. doi: 10.1016/S0012-821X(03)00684-8 CrossRefGoogle Scholar
  23. Newman S, Lowenstern JB (2002) VOLATILECALC: a silicate melt-H2O-CO2 solution model written in Visual Basic for excel. Comput Geosci 28:597–604CrossRefGoogle Scholar
  24. Ochs FA, Lange RA (1999) The density of hydrous magmatic liquids. Science 283:1314–1317CrossRefGoogle Scholar
  25. Silver LA, Ihinger PD, Stolper E (1990) The influence of bulk composition on the speciation of water in silicate glasses. Contrib Mineral Petrol 104:142–162CrossRefGoogle Scholar
  26. Simakin AG, Armienti P, Epel’baum MB (1999) Coupled degassing and crystallization: experimental study at continuous pressure drop, with application to volcanic bombs. Bull Volcanol 61:275–287CrossRefGoogle Scholar
  27. Swanson SE (1977) Relation of nucleation and crystal-growth rate to the development of granitic textures. Am Mineral 62:966–978Google Scholar
  28. Takeuchi S, Nakashima S, Tomiya A, Shinohara H (2005) Experimental constraints on the low gas permeability of vesicular magma during decompression. Geophys Res Lett 32:L10312. doi: 10.1029/2005GL022491 CrossRefGoogle Scholar
  29. Tamic N, Behrens H, Holtz F (2001) The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2-H2O fluid phase. Chem Geol 174:333–347CrossRefGoogle Scholar
  30. Toramaru A (1995) Numerical study of nucleation and growth of bubbles in viscous magmas. J Geophys Res 100:1913–1931CrossRefGoogle Scholar
  31. Toramaru A (2006) BND (bubble number density) decompression rate meter for explosive volcanic eruptions. J Volcanol Geotherm Res 154:303–316, 10.1016/j.jvolgeores.2006.03.027CrossRefGoogle Scholar
  32. Walker D, Mullins O Jr (1981) Surface tension of natural silicate melts from 1, 200–1, 500°C and implications for melt structure. Contrib Mineral Petrol 76:455–462CrossRefGoogle Scholar
  33. Wheeler AJ, Ganji AR (2004) Introduction to engineering experimentation, second edition. Prentice Hall, Englewood CliffsGoogle Scholar
  34. Withers AC, Behrens H (1999) Temperature-induced changes in the NIR spectra of hydrous albitic and rhyolitic glasses between 300 and 100 K. Phys Chem Mineral 27:119–132CrossRefGoogle Scholar
  35. Yamada K, Tanaka H, Nakazawa K, Emori H (2005) A new theory of bubble formation in magma. J Geophys Res 110:B02203. doi: 10.1029/2004JB003113 CrossRefGoogle Scholar
  36. Yamada K, Emori H, Nakazawa K (2008) Time-evolution of bubble formation in a viscous liquid. Earth Planets Space 5:1–16Google Scholar
  37. Yamashita S (1999) Experimental study of the effect of temperature on water solubility in natural rhyolite melt to 100 MPa. J Petrol 40:1497–1507CrossRefGoogle Scholar
  38. Zhang Y (1999) H2O in rhyolitic glasses and melts: measurement, speciation, solubility, and diffusion. Rev Geophys 37:493–516CrossRefGoogle Scholar
  39. Zhang Y, Behrens H (2000) H2O diffusion in rhyolitic melts and glasses. Chem Geol 169:243–262CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Morihisa Hamada
    • 1
    • 5
  • Didier Laporte
    • 2
    • 3
    • 4
  • Nicolas Cluzel
    • 2
    • 3
    • 4
  • Kenneth T. Koga
    • 2
    • 3
    • 4
  • Tatsuhiko Kawamoto
    • 1
  1. 1.Institute for Geothermal SciencesKyoto UniversityBeppuJapan
  2. 2.Clermont Université, Université Blaise Pascal, Laboratoire Magmas et VolcansClermont-FerrandFrance
  3. 3.CNRS, UMR 6524, LMVClermont-FerrandFrance
  4. 4.IRD, R 163, LMVClermont-FerrandFrance
  5. 5.Department of Earth and Planetary SciencesTokyo Institute of TechnologyTokyoJapan

Personalised recommendations