Bulletin of Volcanology

, Volume 72, Issue 6, pp 677–692 | Cite as

The Holocene Pucón eruption of Volcán Villarrica, Chile: deposit architecture and eruption chronology

  • C. Silva ParejasEmail author
  • T. H. Druitt
  • C. Robin
  • H. Moreno
  • J.-A. Naranjo
Research Article


The Pucón eruption was the largest Holocene explosive outburst of Volcán Villarrica, Chile. It discharged >1.0 km3 of basaltic-andesite magma and >0.8 km3 of pre-existing rock, forming a thin scoria-fall deposit overlain by voluminous ignimbrite intercalated with pyroclastic surge beds. The deposits are up to 70 m thick and are preserved up to 21 km from the present-day summit, post-eruptive lahar deposits extending farther. Two ignimbrite units are distinguished: a lower one (P1) in which all accidental lithic clasts are of volcanic origin and an upper unit (P2) in which basement granitoids also occur, both as free clasts and as xenoliths in scoria. P2 accounts for ∼80% of the erupted products. Following the initial scoria fallout phase, P1 pyroclastic flows swept down the northern and western flanks of the volcano, magma fragmentation during this phase being confined to within the volcanic edifice. Following a pause of at least a couple of days sufficient for wood devolatilization, eruption recommenced, the fragmentation level dropped to within the granitoid basement, and the pyroclastic flows of P2 were erupted. The first P2 flow had a highly turbulent front, laid down ignimbrite with large-scale cross-stratification and regressive bedforms, and sheared the ground; flow then waned and became confined to the southeastern flank. Following emplacement of pyroclastic surge deposits all across the volcano, the eruption terminated with pyroclastic flows down the northern flank. Multiple lahars were generated prior to the onset of a new eruptive cycle. Charcoal samples yield a probable eruption age of 3,510 ± 60 14C years BP.


Villarrica Volcano Pucón eruption Pyroclastic flow Ignimbrite Radiocarbon age 



We thank Jorge Clavero, Silke Lohmar, and Alain Gourgaud for discussions and Wes Hildreth and Jocelyn McPhie for their reviews. Silke Lohmar and Laurence Girolami helped in the field. The project was financed by the ECOS/CONICYT Project No. C01U03 and by the French Institute de Recherche pour le Développement (IRD).


  1. Branney MJ, Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Mem Geol Soc Lond 27:1–143Google Scholar
  2. Brown RJ, Branney MJ (2004) Bypassing and diachronous deposition from density currents: evidence from a giant regressive bed form in the Poris Ignimbrite, Tenerife, Canary Islands. Geology 32:445–448CrossRefGoogle Scholar
  3. Carey SN, Sigurdsson H, Sparks RSJ (1988) Experimental studies of particle-laden plumes. J Geophys Res 93:15314–15328CrossRefGoogle Scholar
  4. Cas RAF, Wright JV (1987) Volcanic successions modern and ancient. A geological approach to processes, products and successions. Allen & Unwin, LondonGoogle Scholar
  5. Clavero J (1996) Ignimbritas andesítico-basálticas postglaciales del Volcán Villarrica, Andes del Sur (39°25′S). M.Sc. thesis, Universidad de Chile SantiagoGoogle Scholar
  6. Clavero J, Moreno H (1994) Ignimbritas Licán y Pucón: Evidencias de erupciones explosivas andesítico-basálticas postglaciales del Volcán Villarrica, Andes del Sur, 39°25′S. Actas VII Congreso Geológico Chileno, Concepción 1:250–254Google Scholar
  7. Clavero J, Moreno H (2004) Evolution of Villarrica Volcano. In: Lara LE, Clavero J (eds) Villarrica volcano (39.5°S), Southern Andes, Chile. Servic Nac Geol Miner Bol 61:17–27Google Scholar
  8. Druitt TH (1998) Pyroclastic density currents. In: Gilbert JS, Sparks RSJ (eds) The physics of explosive volcanic eruptions. Geol Soc Lond Spec Pub 145:145–182Google Scholar
  9. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167CrossRefGoogle Scholar
  10. Fisher RV (1990) Transport and deposition of a pyroclastic surge across an area of high relief; the 18 May 1980 eruption of Mount St. Helens, Washington. Geol Soc Am Bull 102:1038–1054CrossRefGoogle Scholar
  11. Hobblit RP, Reynolds RL, Larson EE (1985) Suitability of nonwelded pyroclastic-flow deposits for studies of magnetic secular variation: a test based on deposits emplaced at Mount St. Helens, Washington, in 1980. Geology 13:242–245CrossRefGoogle Scholar
  12. Inman DL (1952) Measures for describing the size distribution of sediments. J Sediment Petrol 22:125–145Google Scholar
  13. LaBerge RD, Giordano G, Cas RAF, Ailleres L (2006) Syn-depositional substrate deformation produced by the shear force of a pyroclastic density current: an example from the Pleistocene ignimbrite at Monte Cimino, northern Lazio, Italy. J Volcanol Geotherm Res 158:307–320CrossRefGoogle Scholar
  14. Lara LE (2004) Overview of Villarrica Volcano. In: Lara LE, Clavero J (eds), Villarrica volcano (39.5°S), southern Andes, Chile. Servic Nac Geol Miner Bol 61:5–12Google Scholar
  15. Lara LE, Clavero J (eds) (2004) Villarrica volcano (39.5°S), Southern Andes, Chile. Servic Nac Geol Miner Bol 61:73Google Scholar
  16. Moreno H (1993) Volcán Villarrica: Geología y evaluación del riesgo volcánico, regiones IX y X, 39°25′S. Informe Final Proyecto FONDECYT 1247 (Inédito) 1–112Google Scholar
  17. Moreno H, Clavero J, Lara L (1994) Actividad explosiva postglacial del Volcán Villarrica, Andes del Sur (39°25′S). Actas VII Congreso Geológico Chileno, Concepción I:329–333Google Scholar
  18. Moreno H, Clavero J (2006) Geología del volcán Villarrica, Regiones de la Araucanía y de los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica, 98, 1 mapa escala 1:50.000, SantiagoGoogle Scholar
  19. Naranjo JA, Moreno H (2004) Laharic debris-flows from Villarrica Volcano. In: Lara LE, Clavero J (eds) Villarrica Volcano (39.5°S), Southern Andes, Chile. Servicio Nacional de Geología y Minería. Boletín 61:28–38Google Scholar
  20. Polanco E, Clavero J (2003) Análisis estadístico de erupciones del Volcán Villarrica (39°25′S), Andes del Sur, Chile. 10°Congreso Geológico Chileno, Universidad de Concepción, pp 7Google Scholar
  21. Pyle D (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15CrossRefGoogle Scholar
  22. Ryan MP, Banks NG, Hoblitt RP, Blevins JYK (1990) The in-situ thermal transport properties and the thermal structure of Mount St. Helens eruptive units. In: Ryan MP (ed) Magma transport and storage. Wiley, New York, pp 137–155Google Scholar
  23. Scott AC, Glasspool IJ (2005) Charcoal reflectance as a proxy for the emplacement temperature of pyroclastic flow deposits. Geology 33:589–592CrossRefGoogle Scholar
  24. Stuiver M, Reimer P, Bard E, Beck J, Burr G, Hughen K, Kromer B, McCormac G, Van der Plicht J, Spurk M (1998) INTCAL98 radiocarbon age calibration, 24,000–0 calBP. Radiocarbon 40:1041Google Scholar
  25. Torres RC, Self S, Martinez ML (1996) Secondary pyroclastic flows from the June 15, 1991, ignimbrite of Mount Pinatubo. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo. Philippines. University of Washington Press, Seattle, pp 665–678Google Scholar
  26. Walker GPL (1983) Ignimbrite types and ignimbrite problems. J Volcanol Geotherm Res 17:65–88CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • C. Silva Parejas
    • 1
    • 2
    • 5
    Email author
  • T. H. Druitt
    • 1
  • C. Robin
    • 1
  • H. Moreno
    • 3
  • J.-A. Naranjo
    • 4
  1. 1.Laboratoire Magmas et VolcansUniversité Blaise Pascal, CNRS & IRDClermont-FerrandFrance
  2. 2.Departamento de GeologíaUniversidad de ChileSantiagoChile
  3. 3.OVDASServicio Nacional de Geología y MineríaTemucoChile
  4. 4.Servicio Nacional de Geología y MineríaProvidenciaChile
  5. 5.Programa de Riesgo VolcánicoServicio Nacional de Geología y MineríaSantiagoChile

Personalised recommendations