Bulletin of Volcanology

, Volume 72, Issue 5, pp 559–577 | Cite as

The Pomici di Avellino eruption of Somma–Vesuvius (3.9 ka BP). Part II: sedimentology and physical volcanology of pyroclastic density current deposits

  • R. SulpizioEmail author
  • R. Bonasia
  • P. Dellino
  • D. Mele
  • M. A. Di Vito
  • L. La Volpe
Research Article


Pyroclastic density currents (PDCs) generated during the Plinian eruption of the Pomici di Avellino (PdA) of Somma–Vesuvius were investigated through field and laboratory studies, which allowed the detailed reconstruction of their eruptive and transportation dynamics and the calculation of key physical parameters of the currents. PDCs were generated during all the three phases that characterised the eruption, with eruptive dynamics driven by both magmatic and phreatomagmatic fragmentation. Flows generated during phases 1 and 2 (EU1 and EU3pf, magmatic fragmentation) have small dispersal areas and affected only part of the volcano slopes. Lithofacies analysis demonstrates that the flow-boundary zones were dominated by granular-flow regimes, which sometimes show transitions to traction regimes. PDCs generated during eruptive phase 3 (EU5, phreatomagmatic fragmentation) were the most voluminous and widespread in the whole of Somma–Vesuvius’ eruptive history, and affected a wide area around the volcano with deposit thicknesses of a few centimetres up to more than 25 km from source. Lithofacies analysis shows that the flow-boundary zones of EU5 PDCs were dominated by granular flows and traction regimes. Deposits of EU5 PDC show strong lithofacies variation northwards, from proximally thick, massive to stratified beds towards dominantly alternating beds of coarse and fine ash in distal reaches. The EU5 lithofacies also show strong lateral variability in proximal areas, passing from the western and northern to the eastern and southern volcano slopes, where the deposits are stacked beds of massive, accretionary lapilli-bearing fine ash. The sedimentological model developed for the PDCs of the PdA eruption explains these strong lithofacies variations in the light of the volcano’s morphology at the time of the eruption. In particular, the EU5 PDCs survived to pass over the break in slope between the volcano sides and the surrounding volcaniclastic apron–alluvial plain, with development of new flows from the previously suspended load. Pulses were developed within individual currents, leading to stepwise deposition on both the volcano slopes and the surrounding volcaniclastic apron and alluvial plain. Physical parameters including velocity, density and concentration profile with height were calculated for a flow of the phreatomagmatic phase of the eruption by applying a sedimentological method, and the values of the dynamic pressure were derived. Some hazard considerations are summarised on the assumption that, although not very probable, similar PDCs could develop during future eruptions of Somma–Vesuvius.


Pyroclastic density currents Pomici di Avellino Somma–Vesuvius Dynamic pressure Volcanic hazard 



This research was partially funded by 2005–2007 INGV–DPC projects. We are grateful to Jim Bishop for revising the English text. Lucia Gurioli and Gert Lube are acknowledged for the careful revision of the manuscript. The Associate Editor James White is warmly thanked for the careful final editing of the manuscript.

Supplementary material

445_2009_340_MOESM1_ESM.doc (209 kb)
ESM 1 (DOC 209 kb)


  1. Albore Livadie C (1980) Palma Campania (Napoli)—Resti di abitato dell’età del Bronzo Antico. Notizie degli scavi di antichità. Atti Acc Naz Lincei 8:59–101Google Scholar
  2. Andronico D, Calderoni G, Cioni R, Sbrana A, Sulpizio R, Santacroce R (1995) Geological map of Somma–Vesuvius volcano. Period Mineral 64:77–78Google Scholar
  3. Arnò V, Principe C, Rosi M, Santacroce R, Sbrana A, Sheridan MF (1987) Eruptive history. In: Santacroce R (ed) Somma–Vesuvius. Quad Ricerc Scientif CNR 8 (114):53–103Google Scholar
  4. Baer EM, Fisher RV, Fuller M, Valentine G (1997) Turbulent transport and deposition of the Ito pyroclastic flow: determinations using anisotropy of magnetic susceptibility. J Geophys Res 102:22565–22586CrossRefGoogle Scholar
  5. Baxter PJ, Boyle R, Cole P, Neri A, Spence R, Zuccaro G (2005) The impacts of pyroclastic surges on buildings at the eruption of the Soufrière Hills volcano, Montserrat. Bull Volcanol 67:292–313CrossRefGoogle Scholar
  6. Blott SJ, Pye K (2001) GRADISTAT: a grain-size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Process Landf 26:1237–1248CrossRefGoogle Scholar
  7. Branney MJ, Kokelaar P (1992) A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull Volcanol 54:504–520CrossRefGoogle Scholar
  8. Branney MJ, Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc London Mem 27:1–143Google Scholar
  9. Burgissier A, Bergantz GW (2002) Reconciling pyroclastic flow and surge: the multiphase physics of pyroclastic density currents. Earth Planet Sci Lett 202:405–418CrossRefGoogle Scholar
  10. Carey SN (1991) Transport and deposition of tephra by pyroclastic flows and surges. In: Fisher RV, Smith GA (eds), Sedimentation in volcanic settings. SEPM Spec Pub 45: 39–57Google Scholar
  11. Cas R, Wright JW (1987) Volcanic successions: modern and ancient. Allen and Unwin, LondonGoogle Scholar
  12. Chough SK, Sohn YK (1990) Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. Sedimentology 37:1115–1135CrossRefGoogle Scholar
  13. Cioni R, Morandi D, Sbrana A, Sulpizio R (1999) L’eruzione delle pomici di Avellino: aspetti stratigrafici e vulcanologici. In: Albore Livadie C (ed) L’eruzione vesuviana delle “Pomici di Avellino” e la facies di Palma Campania (Bronzo antico). Territorio Storico e Ambiente 2. Centro Universitario Europeo per i Beni Culturali, Ravello, Edipuglia, Bari, pp 61–82Google Scholar
  14. Cioni R, Levi S, Sulpizio R (2000) Apulian Bronze Age pottery as a long distance indicator of the Avellino Pumice eruption (Vesuvius, Italy). In: McGuire WG, Griffiths DR, Hancock PL, Stewart IS (eds) The archaeology of geological catastrophes. Geol Soc London Spec Pub 171:159–177Google Scholar
  15. Cioni R, Gurioli L, Lanza R, Zanella E (2004) Temperatures of the A.D. 79 pyroclastic density current deposits (Vesuvius, Italy). J Geophys Res 109:1–18CrossRefGoogle Scholar
  16. Cole PD, Fernandez E, Duarte E, Duncan AM (2005) Explosive activity and generation mechanisms of pyroclastic flows at Arenal volcano, Costa Rica between 1987 and 2001. Bull Volcanol 67:695–716CrossRefGoogle Scholar
  17. Colella A, Hiscott RN (1997) Pyroclastic surges of the Pleistocene Monte Guardia sequence (Lipari island, Italy): depositional processes. Sedimentology 44:47–66CrossRefGoogle Scholar
  18. Dade BW, Huppert HE (1996) Emplacement of the Taupo Ignimbrite by a dilute turbulent flow. Nature 381:509–512CrossRefGoogle Scholar
  19. De Astis G, Dellino P, De Rosa R, La Volpe L (1997) Eruptive and emplacement mechanisms of widespread fine-grained pyroclastic deposits on Vulcano Island (Italy). Bull Volcanol 59:87–102CrossRefGoogle Scholar
  20. Dellino P, Mele D, Bonasia R, Braia G, La Volpe L, Sulpizio R (2005) The analysis of the influence of pumice shape on its terminal velocity. Geophys Res Lett 32:L21306. doi: 10.1029/2005GL023954 CrossRefGoogle Scholar
  21. Dellino P, Mele D, Sulpizio R, La Volpe L, Braia G (2008) A method for the calculation of the impact parameters of dilute pyroclastic density currents based on deposit particle characteristics. J Geophys Res 113:B07206. doi: 10.1029/JB005365 CrossRefGoogle Scholar
  22. Denlinger RP, Iverson RM (2001) Flow of variably fluidized granular masses across three dimensional terrain, 2. Numerical predictions and experimental texts. J Geophys Res 106:553–566CrossRefGoogle Scholar
  23. Di Vito MA (1999) Distribuzione dei depositi dell’eruzione delle “Pomici di Avellino” nell’area napoletana e ricostruzione del paleoambiente prima e dopo l’eruzione. In: Albore Livadie C (ed) L’eruzione vesuviana delle “Pomici di Avellino” e la facies di Palma Campania (Bronzo antico). Territorio Storico e Ambiente 2. Centro Universitario Europeo per i Beni Culturali, Ravello, Edipuglia, Bari, pp 83–92Google Scholar
  24. Di Vito MA, Zanella E, Gurioli L, Lanza R, Sulpizio R, Bishop J, Tema E, Bonzi G, La Forgia E (2009) The Afragola settlement near Vesuvius, Italy: the destruction and abandonment of a Bronze Age village revealed by archaeology, volcanology and rock-magnetism. Earth Planet Sci Lett 277:408–421. doi: 10.1016/j.epsl.2008.11.006 Google Scholar
  25. Dobran F, Neri A, Macedonio G (1993) Numerical simulations of collapsing volcanic columns. J Geophys Res 98:4231–4259CrossRefGoogle Scholar
  26. Felix G, Thomas N (2004) Relation between dry granular flow regimes and morphology of deposits; formation of levees in pyroclastic deposits. Earth Planet Sci Lett 221:197–213CrossRefGoogle Scholar
  27. Fisher RV (1966) Mechanism of deposition from pyroclastic flows. Am J Sci 264:350–366Google Scholar
  28. Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer-Verlag, BerlinGoogle Scholar
  29. Gray TE, Alexander J, Leeder MR (2005) Quantifying velocity and turbulence structure in depositing sustained turbidity currents across breaks in slope. Sedimentology 52:467–488. doi: 10.1111/j.1365-3091.2005.00705.x CrossRefGoogle Scholar
  30. Gurioli L, Cioni R, Sbrana A, Zanella E (2002) Transport and deposition of pyroclastic density currents over an inhabited area: the deposits of the AD 79 eruption of Vesuvius at Herculaneum, Italy. Sedimentology 49:1–26CrossRefGoogle Scholar
  31. Gurioli L, Pareschi MT, Zanella E, Lanza R, Deluca E, Bisson M (2005) Interaction of pyroclastic currents with human settlements: evidences from ancient Pompeii. Geology 33:441–444CrossRefGoogle Scholar
  32. Gurioli L, Zanella E, Pareschi MT, Lanza R (2007) Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 1. Flow direction and deposition. J Geophys Res 112:B05213. doi: 10.1029/2006JB004444 CrossRefGoogle Scholar
  33. Horwell CJ, Baxter P (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69:1–24. doi: 10.1007/s00445-006-0052-y CrossRefGoogle Scholar
  34. Le Roux JP (2003) Can dispersive pressure cause inverse grading in grain flows?—discussion. J Sed Res 73:333–334CrossRefGoogle Scholar
  35. Lowe DR (1982) Sediment gravity flows: II. Depositional models with special references to deposits of high density turbidity currents. J Sed Petrol 52:279–297Google Scholar
  36. Macias JL, Espindola JM, Bursik M, Sheridan MF (1998) Development of lithic-breccias in the 1982 pyroclastic flow deposits of El Chichon volcano, Mexico. J Volcanol Geotherm Res 83:173–196CrossRefGoogle Scholar
  37. Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res 109:B11201. doi: 10.1029/2004JB003155 CrossRefGoogle Scholar
  38. Mastrolorenzo G, Petrone P, Pappalardo L, Sheridan M (2006) The Avellino 3780-yr-B.P. catastrophe as a worst-case scenario for a future eruption at Vesuvius. PNAS 103:4366–4370CrossRefGoogle Scholar
  39. Mathisen ME, Vondra CF (1983) The fluvial and pyroclastic deposits of the Cagayan basin, Northern Luzon, Philippines—an example of non-marine volcaniclastic sedimentation in an interarc basin. Sedimentology 30:369–392CrossRefGoogle Scholar
  40. Miall AD (1978) Lithofacies types and vertical profiles models in braided river deposits: a summary. In: Miall AD (ed), Fluvial sedimentology. Can Soc of Petrol Geol Mem, 5: 597–604Google Scholar
  41. Miall AD (1985) Architectural-element analyses: a new method of facies analyses applied to fluvial deposits. Earth Sci Rev 22:261–308CrossRefGoogle Scholar
  42. Mulder T, Alexander J (2001) The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48:269–299CrossRefGoogle Scholar
  43. Nemec W (1990) Aspects of sediment movement on steep delta slopes. In: Colella A, Prior DB (eds), Coarse grained deltas. Intl Assoc Sedimentol Spec Pub 10: 29–73Google Scholar
  44. Santacroce R, Andronico D, Cavarra L, Cioni R, Favalli M, Longo A, Macedonio G, Pareschi MT, Sbrana A, Sulpizio R, Zanchetta G (1998) Updating the scenario of the mid-term maximum expected eruption of Vesuvius. International Meeting on Cities on Volcanoes. Rome and Naples, Italy, June 28–July 4, 1998Google Scholar
  45. Santacroce R, Cioni R, Marianelli P, Sbrana A, Sulpizio R, Zanchetta G, Donahue DJ, Joron JL (2008) Age and whole rock–glass compositions of proximal pyroclastics from the major explosive eruptions of Somma–Vesuvius: a review as a tool for distal tephrostratigraphy. J Volcanol Geotherm Res 177:1–18. doi: 10.1016/j.jvolgeores.2008.06.009 CrossRefGoogle Scholar
  46. Smith GA (1986) Coarse grained nonmarine volcaniclastic sediment: terminology and depositional process. Geol Soc Am Bull 97:1–10CrossRefGoogle Scholar
  47. Smith GA (1987) The influence of explosive volcanism on fluvial sedimentation: the Deschutes formation (Neogene) in central Oregon. J Sed Petrol 57:613–629Google Scholar
  48. Sohn YK, Chough SK (1989) Depositional processes of the Suwolbong Tuff Ring, Cheju Island (Korea). Sedimentology 36:837–855CrossRefGoogle Scholar
  49. Sparks RSJ, Gardeweg MC, Calder ES, Matthews SJ (1997) Erosion by pyroclastic flows on Lascar volcano, Chile. Bull Volcanol 58:557–565CrossRefGoogle Scholar
  50. Spence R, Baxter P, Zuccaro G (2004) Building vulnerability and human casualty estimation for a pyroclastic flow: a model and its application to Vesuvius. J Volcanol Geotherm Res 133:321–343CrossRefGoogle Scholar
  51. Sulpizio R, Dellino P (2008) Sedimentology, depositional mechanisms and pulsating behaviour of pyroclastic density currents. In: Gottsman J, Marti J (eds). Calderas volcanism: analysis, modelling and response. Devel Volcanol 10: 57–96. doi: 10.1016/S1871-644X(07)00002-2
  52. Sulpizio R, Mele D, Dellino P, La Volpe L (2005) A complex, Subplinian-type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: the A.D. 472 (Pollena) eruption of Somma–Vesuvius, Italy. Bull Volcanol 67:743–767CrossRefGoogle Scholar
  53. Sulpizio R, Mele D, Dellino P, La Volpe L (2007) High variability of sedimentology and physical properties of pyroclastic density currents during complex Subplinian eruptions: the example of the AD 472 (Pollena) eruption of Somma–Vesuvius, Italy. Sedimentology 54:607–635CrossRefGoogle Scholar
  54. Sulpizio R, Bonasia R, Dellino P, Di Vito MA, La Volpe L, Mele D, Zanchetta G, Sadori L (2008a) Discriminating the-long distance dispersal of fine ash from sustained columns or near ground ash clouds: the example of the Pomici di Avellino eruption (Somma–Vesuvius, Italy). J Volcanol Geotherm Res 177:263–276. doi: 10.1016/j.jvolgeores.2007.11.012 CrossRefGoogle Scholar
  55. Sulpizio R, De Rosa R, Donato P (2008b) The influence of variable topography on the depositional behaviour of pyroclastic density currents: the examples of the Upper Pollara eruption (Salina Island, southern Italy). J Volcanol Geotherm Res 175:367–385. doi: 10.1016/j.jvolgeores.2008.03.018 CrossRefGoogle Scholar
  56. Sulpizio R, Cioni R, Di Vito MA, Mele D, Bonasia R, Dellino P (2010) The Pomici di Avellino eruption of Somma–Vesuvius (3.9 ka BP) part I: stratigraphy, compositional variability and eruptive dynamics. Bull Volcanol. doi: 10.1007/s00445-009-0339-x
  57. Todesco M, Neri A, OngaroT E, Papale P, Macedonio G, Santacroce R, Longo A (2002) Pyroclastic flow hazard assessment at Vesuvius (Italy) by using numerical modeling. I. Large-scale dynamics. Bull Volcanol 64:155–177CrossRefGoogle Scholar
  58. Valentine GA (1998) Damage to structures by pyroclastic flows and surges, inferred from nuclear weapons effects. J Volcanol Geotherm Res 49:616–630Google Scholar
  59. Waresback DB, Turbeville BN (1990) Evolution of a Plio–Pleistocene volcanogenic alluvial fan: the Puye formation, Jemez Mountains, New Mexico. Geol Soc Am Bull 102:298–314CrossRefGoogle Scholar
  60. Zanchetta G, Sulpizio R, Di Vito MA (2004a) The role of volcanic activity and climate in alluvial fan growth at volcanic areas: an example from southern Campania (Italy). Sed Geol 168:249–280CrossRefGoogle Scholar
  61. Zanchetta G, Sulpizio R, Pareschi MT, Leoni FM, Santacroce R (2004b) Characteristics of May 5–6 1998 volcaniclastic debris-flows in the Sarno area (Campania, Southern Italy): relationships to structural damage and hazard zonation. J Volcanol Geotherm Res 133:377–393CrossRefGoogle Scholar
  62. Zimanowski B, Frohlich G, Lorenz V (1991) Quantitative experiments on phreatomagmatic explosions. J Volcanol Geotherm Res 48:341–358CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • R. Sulpizio
    • 1
    Email author
  • R. Bonasia
    • 1
    • 2
  • P. Dellino
    • 1
  • D. Mele
    • 1
  • M. A. Di Vito
    • 2
  • L. La Volpe
    • 1
  1. 1.CIRISIVU, c/o Dipartimento GeomineralogicoBariItaly
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaNaplesItaly

Personalised recommendations