Bulletin of Volcanology

, Volume 72, Issue 4, pp 431–447 | Cite as

Time-scales of recent Phlegrean Fields eruptions inferred from the application of a ‘diffusive fractionation’ model of trace elements

  • Diego PeruginiEmail author
  • Giampiero Poli
  • Maurizio Petrelli
  • Cristina P. De Campos
  • D. B. Dingwell
Research Article


The variation of chemical element compositions in two pyroclastic sequences (Astroni 6 and Averno 2, Phlegrean Fields, Italy) is studied. Both sequences are compositionally zoned indicating a variability of melt compositions in the magma chamber prior to eruption. A clear dichotomy between the behaviour of major vs. trace elements is also observed in both sequences, with major elements displaying nearly linear inter-elemental trends and trace elements showing a variable scattered behaviour. Together with previous petrological investigations these observations are consistent with the hypothesis that magma mixing processes played a key role in the evolution of these two magmatic systems. Recently it has been suggested that mixing processes in igneous systems may strongly influence the mobility of trace elements inducing a ‘diffusive fractionation’ phenomenon, whose extent depends on the mixing time-scale. Here we merge information from 1) numerical simulations of magma mixing, and 2) magma mixing experiments (using as end-members natural compositions from Phlegrean Fields) to derive a relationship relating the degree of ‘diffusive fractionation’ to the mixing time-scales. Application of the ‘diffusive fractionation’ model to the two studied pyroclastic sequences allowed us to apply the relationship derived by numerical simulations and experiments to estimate the mixing time-scales for these two magmatic systems. Results indicate that mixing processes in Astroni 6 and Averno 2 systems lasted for approximately 2 and 9 days, respectively, prior to eruption.


Phlegrean Fields Magma interaction Trace elements Chaotic mixing Numerical models Experiments Eruption time-scales 



This work was funded by INGV (Istituto Nazionale di Geofisica e Vulcanologia), MIUR (Ministero Italiano dell’Università e della Ricerca), and University of Perugia grants. The authors would like to express their gratitude to Mauro Di Vito, Lucia Civetta and Giovanni Orsi for their suggestions and assistance during field work. D.B. Dingwell acknowledges the support of a Research Professorship (LMUexcellent) of the Bundesexcellenziniziativ. Constructive comments by R. Cioni and M. Jellinek are gratefully acknowledged.


  1. Allard P, Maiorani A, Tedesco D, Cortecci G, Turi B (1991) Isotopic study of the origin of sulfur and carbon in Solfatara fumaroles, Campi Flegrei caldera. J Volcanol Geotherm Res 48:139–159CrossRefGoogle Scholar
  2. Andereck CD, Liu SS, Swinney HL (1986) Flow regimes in a circular Couette flow system with independently rotating cylinders. J Fluid Mech 164:155–183CrossRefGoogle Scholar
  3. Aref H, El Naschie MS (1995) Chaos applied to fluid mixing. Pergamon, ExeterGoogle Scholar
  4. Barberi F, Cassano E, La Torre P, Sbrana A (1991) Structural evolution of Campi Flegrei Caldera in light of volcanological and geophysical data. J Volcanol Geotherm Res 48:33–49CrossRefGoogle Scholar
  5. Cerbelli S, Zalc JM, Muzzio FJ (2000) The evolution of material lines curvature in deterministic chaotic flows. Chem Eng Sci 55:363–371CrossRefGoogle Scholar
  6. Christofides G, Perugini D, Koroneos A, Soldatos T, Poli G, Eleftheriadis G, Del Moro A, Neiva AM (2007) Interplay between geochemistry and magma dynamics during magma interaction: an example from the Sithonia Plutonic Complex (NE Greece). Lithos 95:243–266CrossRefGoogle Scholar
  7. Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes — the Campanian Ignimbrite, Campi Flegrei caldera, Italy. J Volcanol Geotherm Res 75:183–219CrossRefGoogle Scholar
  8. D’Antonio M, Civetta L, Orsi G, Pappalardo L, Piochi M, Carandente A, de Vita S, Di Vito MA, Isaia R (1999) The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behavior in the past 12 ka. J Volcanol Geotherm Res 91:247–268CrossRefGoogle Scholar
  9. D’Antonio M, Tonarini S, Arienzo I, Civetta L, Di Renzo V (2007) Components and processes in the magma genesis of the Phlegrean Volcanic District, (Southern Italy). In: Beccaluva L, Bianchini G, Wilson M (eds) Cenozoic volcanism in the Mediterranean area. Geol Soc Am Spec Pap 418:203–220Google Scholar
  10. D’Antonio M, Di Vito MA, Baia G, Carroll M, Civetta L, Isaia R, Orsi G, Piermattei M (2002) The Averno 2 eruption (Campi Flegrei caldera, Italy): influence of structural setting on magma evolution and eruption history. EGS XXVII General Assembly, EGS 02-A-04437Google Scholar
  11. De Campos CP, Dingwell DB, Fehr KT (2004) Decoupled convection cells from mixing experiments with alkaline melts from Phlegrean Fields. Chem Geol 213:227–251CrossRefGoogle Scholar
  12. De Campos CP, Dingwell DB, Perugini D, Civetta L, Fehr TK (2008) Heterogeneities in magma chambers: insights from the behavior of major and minor elements during mixing experiments with natural alkaline melts. Chem Geol 256:131–145CrossRefGoogle Scholar
  13. de Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Deino A, di Cesare T, Di Vito MA, Fisher RV, Isaia R, Marotta E, Necco A, Ort M, Pappalardo L, Piochi M, Southon J (1999) The Agnano—Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:269–301CrossRefGoogle Scholar
  14. De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin HE (2001) New constraints on the pyroclastic eruptive history of the Campanian Volcanic Plain (Italy). Mineral Petrol 73:47–65CrossRefGoogle Scholar
  15. Deino AL, Orsi G, Piochi M, de Vita S (2004) The age of the Neapolitan Yellow Tuff caldera—forming eruption (Campi Flegrei caldera—Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–170CrossRefGoogle Scholar
  16. Dingwell DB (1986) Viscosity-temperature relationships in the system Na2SiO5-Na4Al2O5. Geochim Cosmochim Acta 10:1261–1265CrossRefGoogle Scholar
  17. Dingwell DB (1988) The structures and properties of fluorine-rich magmas: a review of experimental studies. In: Taylor RP, Strong DF (eds) Recent advances in the geology of granite-related mineral deposits. Can Inst Min Metal Spec Vol 39:1–12Google Scholar
  18. Di Vito MA, Lirer L, Mastrolorenzo G, Rolandi G (1987) The Monte Nuovo eruption, Campi Flegrei, Italy. Bull Volcanol 49:608–615CrossRefGoogle Scholar
  19. Di Vito MA, Isaia R, Orsi G, Southon J, de Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation since 12, 000 years at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:221–246CrossRefGoogle Scholar
  20. Di Vito MA, Braia G, Isaia R, Orsi G, Piermattei M (2001) The Averno 2 eruption in the northwestern sector of the Campi Flegrei caldera (Italy). Volcanic hazard assessment and zonation at the resurgent Campi Flegrei caldera and their effects on man and environment. Osservatorio Vesuviano Ed, pp 101–106Google Scholar
  21. Fisher RV, Orsi G, Ort M, Heiken G (1993) Mobility of a large-volume pyroclastic flow-emplacement of the Campanian Ignimbrite, Italy. J Volcanol Geotherm Res 56:205–220CrossRefGoogle Scholar
  22. Isaia R, D’Antonio M, Dell’Erba F, Di Vito M, Orsi G (2004) The Astroni volcano: the only example of closely spaced eruptions in the same vent area during the recent history of the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 133:171–192CrossRefGoogle Scholar
  23. Langmuir CH, Vocke RDJ, Hanson GM, Hart SR (1978) A general mixing equation with application to Icelandic basalts. Earth Planet Sci Lett 37:380–392CrossRefGoogle Scholar
  24. Leonard G, Cole J, Nairn I, Self S (2002) Basalt triggering of the c. AD 1305 Kaharoa rhyolite eruption, Tarawera Volcanic Complex, New Zealand. J Volcanol Geotherm Res 115:461–486CrossRefGoogle Scholar
  25. Liu M, Muzzio FJ, Peskin RL (1994) Quantification of mixing in aperiodic chaotic flows. Chaos Sol Fract 4:869–893CrossRefGoogle Scholar
  26. Metcalfe G, Bina CR, Ottino JM (1995) Kinematic considerations for mantle mixing. Geophys Res Lett 22:743–746CrossRefGoogle Scholar
  27. Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Lejeune AM, Brewer TS, Macdonald R, Black S, Young S (1998) The role of magma mixing in triggering the current eruption at the Soufriere Hills volcano, Montserrat, West Indies. Geophys Res Lett 25:3433–3436CrossRefGoogle Scholar
  28. Mysen BO (1988) Structure and properties of silicate melts. In: Fyfe WS (ed) Developments in geochemistry 4. Elsevier, New York, p 327Google Scholar
  29. Nakamura E, Kushiro I (1998) Trace element diffusion in jadeite and diopside melts at high pressures and its geochemical implication. Geochim Cosmochim Acta 62:3151–3160CrossRefGoogle Scholar
  30. Nakamura M (1995) Continuous mixing of crystal mush and replenished magma in the ongoing Unzen eruption. Geology 23:807–810CrossRefGoogle Scholar
  31. Orsi G, Civetta L, D’Antonio M, Di Girolamo P, Piochi M (1995) Step-filling and development of a zoned magma chamber: the Neapolitan Yellow Tuff case history. J Volcanol Geotherm Res 67:291–312CrossRefGoogle Scholar
  32. Orsi G, Civetta L, Del Gaudio C, de Vita S, Di Vito MA, Isaia R, Petrazzuoli S, Ricciardi G, Ricco C (1999) Short-term ground deformations and seismicity in the nested Campi Flegrei caldera (Italy): an example of active block resurgence in a densely populated area. J Volcanol Geotherm Res 91:415–451CrossRefGoogle Scholar
  33. Orsi G, D’Antonio M, de Vita S, Gallo G (1992) The Neapolitan Yellow Tuff, a large-magnitude trachytic phreatoplinian eruption: eruptive dynamics, magma withdrawal and caldera collapse. J Volcanol Geotherm Res 53:275–287CrossRefGoogle Scholar
  34. Orsi G, de Vita S, Di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214CrossRefGoogle Scholar
  35. Orsi G, Di Vito M, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530CrossRefGoogle Scholar
  36. Pappalardo L, Civetta L, D’Antonio M, Deino AL, Di Vito MA, Orsi G, Carandente A, de Vita S, Isaia R, Piochi M (1999) Chemical and isotopical evolution of the Phlegraean magmatic system before the Campanian Ignimbrite (37 ka) and the Neapolitan Yellow Tuff (12 ka) eruptions. J Volcanol Geotherm Res 91:141–166CrossRefGoogle Scholar
  37. Pappalardo L, Piochi M, D’Antonio M, Civetta L, Petrini R (2002) Evidence for multi-stage magmatic evolution during the past 60 kyr at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data. J Petrol 43:1415–1434CrossRefGoogle Scholar
  38. Perugini D, Poli G (2007) Tourmaline nodules from Capo Bianco Aplite (Elba Island, Italy): an example of diffusion limited aggregation growth in a magmatic system. Contrib Mineral Petrol 153:493–508CrossRefGoogle Scholar
  39. Perugini D, Petrelli M, Poli G (2006) Diffusive fractionation of trace elements by chaotic mixing of magmas. Earth Planet Sci Lett 243:669–680CrossRefGoogle Scholar
  40. Perugini D, De Campos C, Dingwell DB, Petrelli M, Poli G (2008) Trace element mobility during magma mixing: preliminary experimental results. Chem Geol 256:146–157CrossRefGoogle Scholar
  41. Perugini D, Poli G, Gatta G (2002) Analysis and simulation of magma mixing processes in 3D. Lithos 65:313–330CrossRefGoogle Scholar
  42. Perugini D, Poli G, Mazzuoli R (2003) Chaotic advection, fractals and diffusion during mixing of magmas: evidence from lava flows. J Volcanol Geotherm Res 124:255–279CrossRefGoogle Scholar
  43. Perugini D, Ventura G, Petrelli M, Poli G (2004) Kinematic significance of morphological structures generated by mixing of magmas: a case study from Salina Island (Southern Italy). Earth Planet Sci Lett 222:1051–1066CrossRefGoogle Scholar
  44. Perugini D, Poli G, Valentini L (2005) Strange attractors in plagioclase oscillatory zoning: petrological implications. Contrib Mineral Petrol 149:482–497CrossRefGoogle Scholar
  45. Petrelli M, Poli G, Perugini D, Peccerillo A (2005) Petrograph: a new software to visualize, model, and present geochemical data in igneous petrology. Geochem Geophys Geosys 6:Q07011. doi: 10.1029/2005GC000932 CrossRefGoogle Scholar
  46. Petrelli M, Perugini D, Poli G (2006) Time-scales of hybridisation of magmatic enclaves in regular and chaotic flow fields: petrologic and volcanologic implications. Bull Volcanol 68:285–293CrossRefGoogle Scholar
  47. Petrelli M, Perugini D, Poli G, Peccerillo A (2007) Graphite electrode lithium tetraborate fusion for trace element determination in bulk geological samples by Laser Ablation ICP-MS. Microchim Acta 158:275–282CrossRefGoogle Scholar
  48. Petrelli M, Perugini D, Alagna E, Poli G, Peccerillo A (2008) Spatially resolved and bulk trace element analysis by laser ablation—inductively coupled plasma—mass spectrometry (LA-ICP-MS). Per Mineral 77:3–21Google Scholar
  49. Rosi M, Sbrana A, Principe C (1983) The Phlegrean Fields: structural evolution, volcanic history and eruptive mechanisms. J Volcanol Geotherm Res 17:273–288CrossRefGoogle Scholar
  50. Self S (1992) Krakatau revisited: the course of events and interpretation of the 1883 eruption. GeoJournal 28:109–121CrossRefGoogle Scholar
  51. Sparks SRJ, Sigurdsson H, Wilson L (1977) Magma mixing: a mechanism for triggering acid explosive eruptions. Nature 267:315–318CrossRefGoogle Scholar
  52. Tonarini S, D’Antonio M, Di Vito MA, Orsi G, Carandente A (2009) Geochemical and B-Sr-Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera (southern Italy). Lithos 107:135–151CrossRefGoogle Scholar
  53. Tritton D (1988) Physical fluid dynamics. Oxford University Press, OxfordGoogle Scholar
  54. Viccaro M, Ferlito C, Cortesogno L, Cristofolini R, Gaggero L (2006) Magma mixing during the 2001 event at Mount Etna (Italy): effects on the eruptive dynamics. J Volcanol Geotherm Res 149:139–159CrossRefGoogle Scholar
  55. Wohletz K, Orsi G, de Vita S (1995) Eruptive mechanisms of the Neapolitan Yellow Tuff interpreted from stratigraphic, chemical, and granulometric data. J Volcanol Geotherm Res 67:263–290CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Diego Perugini
    • 1
    Email author
  • Giampiero Poli
    • 1
  • Maurizio Petrelli
    • 1
  • Cristina P. De Campos
    • 2
  • D. B. Dingwell
    • 2
  1. 1.Department of Earth SciencesUniversity of PerugiaPerugiaItaly
  2. 2.Department of Earth and Environmental SciencesLudwig Maximilian UniversityMunichGermany

Personalised recommendations