Bulletin of Volcanology

, Volume 72, Issue 3, pp 309–330 | Cite as

Paleomagnetic determination of emplacement temperatures of pyroclastic deposits: an under-utilized tool

  • Greig A. PatersonEmail author
  • Andrew P. Roberts
  • Conall Mac Niocaill
  • Adrian R. Muxworthy
  • Lucia Gurioli
  • José G. Viramonté
  • Carlos Navarro
  • Shoshana Weider
Research Article


Paleomagnetic data from lithic clasts collected from Mt. St. Helens, USA, Volcán Láscar, Chile, Volcán de Colima, Mexico and Vesuvius, Italy have been used to determine the emplacement temperature of pyroclastic deposits at these localities and to highlight the usefulness of the paleomagnetic method for determining emplacement temperatures. At Mt. St. Helens, the temperature of the deposits (T dep ) at three sites from the June 12, 1980 eruption was found to be ≥532°C, ≥509°C, and 510–570°C, respectively. One site emplaced on July 22, 1980 was emplaced at ≥577°C. These new paleomagnetic temperatures are in good agreement with previously published direct temperature measurements and paleomagnetic estimates. Lithic clasts from pyroclastic deposits from the 1993 eruption of Láscar were fully remagnetized above the respective Curie temperatures, which yielded a minimum T dep of 397°C. Samples were also collected from deposits thought to be pyroclastics from the 1913, 2004 and 2005 eruptions of Colima. At Colima, the sampled clasts were emplaced cold. This is consistent with the sampled clasts being from lahar deposits, which are common in the area, and illustrates the usefulness of the paleomagnetic method for distinguishing different types of deposit. T dep of the lower section of the lithic rich pyroclastic flow (LRPF) from the 472 A.D. deposits of Vesuvius was ~280–340°C. This is in agreement with other, recently published paleomagnetic measurements. In contrast, the upper section of the LRPF was emplaced at higher temperatures, with T dep ~520°C. This temperature difference is inferred to be the result of different sources of lithic clasts between the upper and lower sections, with the upper section containing a greater proportion of vent-derived material that was initially hot. Our studies of four historical pyroclastic deposits demonstrates the usefulness of paleomagnetism for emplacement temperature estimation.


Emplacement temperature Mt. St. Helens Paleomagnetism Pyroclastic deposits Vesuvius Volcán de Colima Volcán Láscar 



This study was funded by NERC grant NER/S/A/2005/13478. Collection of the Mt. St. Helens, Colima and Vesuvius samples was funded through a Royal Society grant to ARM. We thank Karen Paola Guzmán Montenegro for assistance with collecting samples from Láscar, Jose Guadalupe Landin Orozco for assisting with sampling at Colima and Francesca Lawley and Andrew Harris for assistance at Vesuvius. We thank Michelle Harris for assistance with lithology classification. We also thank two anonymous reviewers for their helpful comments that improved the manuscript.

Supplementary material

445_2009_324_MOESM1_ESM.pdf (95 kb)
Supplementary material: Paleomagnetic determination of emplacement temperatures of pyroclastic deposits: an under-utilized tool (PDF 95 KB)


  1. Alva-Valdivia LM, Rosas-Elguera J, Bravo-Medina T, Urrutia-Fucugauchi J, Henry B, Caballero C, Rivas-Sanchez ML, Goguitchaichvili A, Lopez-Loera H (2005) Paleomagnetic and magnetic fabric studies of the San Gaspar ignimbrite, western Mexico—constraints on emplacement mode and source vents. J Volcanol Geotherm Res 147:68–80. doi: 10.1016/j.jvolgeores.2005.03.006 CrossRefGoogle Scholar
  2. Aramaki S, Akimoto S (1957) Temperature estimation of pyroclastic deposits by natural remanent magnetism. Am J Sci 255:619–627Google Scholar
  3. Banks NG, Hoblitt R (1981) Summary of temperature studies of 1980 deposits. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250:295–313Google Scholar
  4. Banks NG, Hoblitt RP (1996) Direct temperature measurements of deposits, Mount St. Helens, Washington, 1980–1981. US Geol Surv Prof Pap 1387:1–76Google Scholar
  5. Bardot L (2000) Emplacement temperature determinations of proximal pyroclastic deposits on Santorini, Greece, and their implications. Bull Volcanol 61:450–467. doi: 10.1007/PL00008911 CrossRefGoogle Scholar
  6. Bardot L, McClelland E (2000) The reliability of emplacement temperature estimates using palaeomagnetic methods: a case study from Santorini, Greece. Geophys J Int 143:39–51. doi: 10.1046/j.1365-246x.2000.00186.x CrossRefGoogle Scholar
  7. Bardot L, Thomas R, McClelland E (1996) Emplacement temperatures of pyroclastic deposits on Santorini deduced from palaeomagnetic measurements: constraints on eruption mechanisms. In: Morris A, Tarling DH (eds) Palaeomagnetism and tectonics of the Mediterranean region. Geol Soc London Spec Pub 105:345–357Google Scholar
  8. Bol’shakov, AS, Shcherbakova VV (1979) Thermomagnetic criterion for determining the domain structure of ferrimagnetics. Izv Acad Sci USSR Phys Solid Earth 15:111–117Google Scholar
  9. Bretón M, Ramírez JJ, Navarro C (2002) Summary of the historical eruptive activity of Volcán De Colima, Mexico 1519–2000. J Volcanol Geotherm Res 117:21–46. doi: 10.1016/S0377-0273(02)00233-0 CrossRefGoogle Scholar
  10. Butler, RF (1992), Paleomagnetism: magnetic domains to geologic terranes. Blackwell Scientific, BostonGoogle Scholar
  11. Calder ES, Cole PD, Dade WB, Druitt TH, Hoblitt RP, Huppert HE, Ritchie L, Sparks RSJ, Young SR (1999) Mobility of pyroclastic flows and surges at the Soufriére Hills Volcano, Montserrat. Geophys Res Lett 26:537–540. doi: 10.1029/1999GL900051 CrossRefGoogle Scholar
  12. Calder ES, Sparks RSJ, Gardeweg MC (2000) Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Láscar Volcano, Chile. J Volcanol Geotherm Res 104:201–235. doi: 10.1016/S0377-0273(00)00207-9 CrossRefGoogle Scholar
  13. Capasso L, Caramiello S, D’Anastasio R, Di Domenicantonio L, Di Fabrizio A, Di Nardo F, La Verghetta M (2000) Paleobiologia della popolazione di Ercolano (79 dC). Recenti Prog Med 91:288–296Google Scholar
  14. Chadwick RA (1971) Paleomagnetic criteria for volcanic breccia emplacement. Geol Soc Amer Bull 82:2285–2294. doi: 10.1130/0016-7606(1971)82[2285:PCFVBE]2.0.CO;2 CrossRefGoogle Scholar
  15. Cioni R, Gurioli L, Lanza R, Zanella E (2004) Temperatures of the AD 79 pyroclastic density current deposits (Vesuvius, Italy). J Geophys Res 109:B02207. doi: 10.1029/2002JB002251 CrossRefGoogle Scholar
  16. Clement BM, Conner CB, Graper G (1993) Paleomagnetic estimate of the emplacement temperature of the long-runout Nevado De Colima Volcanic debris avalanche deposit, Mexico. Earth Planet Sci Lett 120:499–510CrossRefGoogle Scholar
  17. Cole PD, Calder ES, Druitt TH, Hoblitt R, Robertson R, Sparks RSJ, Young SR (1998) Pyroclastic flows generated by gravitational instability of the 1996–97 lava dome of Soufriére Hills Volcano, Montserrat. Geophys Res Lett 25:3425–3428. doi: 10.1029/98gl01510 CrossRefGoogle Scholar
  18. Crandell D (1971) Postglacial lahars from Mount Rainier Volcano, Washington. US Geol Surv Prof Pap 677:1–75Google Scholar
  19. Crandell DR, Mullineaux DR (1973) Pine creek volcanic assemblage at Mount St. Helens, Washington. US Geol Surv Bull 1383-A:1–23Google Scholar
  20. Davila N, Capra L, Gavilanes-Ruiz JC, Varley N, Norini G, Vazquez AG (2007) Recent lahars at Volcán de Colima (Mexico): drainage variation and spectral classification. J Volcanol Geotherm Res 165:127–141. doi: 10.1016/j.jvolgeores.2007.05.016 CrossRefGoogle Scholar
  21. De Gennaro M, Naimo D, Gialenella P, Incoronato A, Mastrolorenzo G (1996) Palaeomagnetic controls on the emplacement of the Neapolitan Yellow Tuff (Campi Flegrei, Southern Italy). In: Morris A, Tarling DH (eds) Palaeomagnetism and tectonics of the Mediterranean region. Geol Soc London Spec Pub 105:359–365Google Scholar
  22. Denniss AM, Carlton RWT, Harris AJL, Rothery DA, Francis PW (1998) Satellite observations of the April 1993 eruption of Láscar Volcano. Int J Remote Sens 19:801–821. doi: 10.1080/014311698215739 CrossRefGoogle Scholar
  23. Déruelle B, Medina ET, Figueroa OA, Maragano MC, Viramonté JG (1995) The recent eruption of Láscar volcano (Atacama-Chile, April 1993): petrological and volcanological relationships. C R Acad Sci Paris 321:377–384Google Scholar
  24. Déruelle B, Figueroa OA, Medina ET, Viramonté JG, Maragano MC (1996) Petrology of pumices of April 1993 eruption of Láscar (Atacama, Chile). Terra Nova 8:191–199. doi: 10.1111/j.1365-3121.1996.tb00744.x CrossRefGoogle Scholar
  25. Di Vito MA, Zanella E, Gurioli L, Lanza R, Sulpizio R, Bishop J, Tema E, Boenzi G, Laforgia E (2009) The Afragola settlement near Vesuvius, Italy: the destruction and abandonment of a bronze age village revealed by archaeology, volcanology and rock-magnetism. Earth Planet Sci Lett 277:408–421. doi: 10.1016/j.epsl.2008.11.006 CrossRefGoogle Scholar
  26. Downey WS, Tarling DH (1991) Reworking characteristics of Quaternary pyroclastics, Thera (Greece), determined using magnetic properties. J Volcanol Geotherm Res 46:143–155. doi: 10.1016/0377-0273(91)90080-J CrossRefGoogle Scholar
  27. Druitt TH, Calder ES, Cole PD, Hoblitt RP, Loughlin SC, Norton GE, Ritchie LJ, Sparks RSJ, Voight B (2002) Small-volume, highly mobile pyroclastic flows formed by rapid sedimentation from pyroclastic surges at Soufriere Hills Volcano, Montserrat; an important volcanic hazard. In: Druitt DH, Kokelaar B (eds) The eruption of Soufriére Hills Volcano, Montserrat, from 1995 to 1999. Mem Geol Soc Lond 21:263–279Google Scholar
  28. Dunlop DJ (1971) Magnetic properties of fine-particle hematite. Ann Geophys 27:269–293Google Scholar
  29. Erwin PS (2001) Palaeomagnetic investigations of volcano instability. PhD thesis, University of Oxford, OxfordGoogle Scholar
  30. Fabian, K (2003) Statistical theory of weak field thermoremanent magnetization in multidomain particle ensembles. Geophys J Int 155:479–488. doi: 10.1046/j.1365-246X.2003.02057.x CrossRefGoogle Scholar
  31. Fisher RA (1953) Dispersion on a sphere. Proc R Soc Lond A217:295–305. doi: 10.1098/rspa.1953.0064 Google Scholar
  32. Grubensky MJ, Smith GA, Geissman JW (1998) Field and paleomagnetic characterization of lithic and scoriaceous breccias at Pleistocene Broken Top volcano, Oregon Cascades. J Volcanol Geotherm Res 83:93–114. doi: 10.1016/S0377-0273(98)00006-7 CrossRefGoogle Scholar
  33. Hoblitt RP, Kellogg KS (1979) Emplacement temperatures of unsorted and unstratified deposits of volcanic rock debris as determined by paleomagnetic techniques. Geol Soc Amer Bull 90:633–642CrossRefGoogle Scholar
  34. Hoblitt RP, Reynolds RL, Larson EE (1985) Suitability of nonwelded pyroclastic-flow deposits for studies of magnetic secular variation: a test based on deposits emplaced at Mount St. Helens, Washington, in 1980. Geology 13:242–245. doi: 10.1130/0091-7613(1985)13<242:SONPDF>2.0.CO;2 CrossRefGoogle Scholar
  35. Kent DV, Ninkovitch D, Pescatore T, Sparks RSJ (1981) Palaeomagnetic determination of emplacement temperature of the Vesuvius AD 79 pyroclastic deposits. Nature 290:393–396. doi: 10.1038/290393a0 CrossRefGoogle Scholar
  36. Kirschvink JL (1980) The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J R Astron Soc 62:699–718Google Scholar
  37. Leonhardt R (2006) Analyzing rock magnetic measurements: the RockMagAnalyzer 1.0 software. Comput Geosci 32:1420–1431CrossRefGoogle Scholar
  38. Levi, S (1977) Effect of magnetite particle-size on paleointensity determinations of geomagnetic-field. Phys Earth Planet Inter 13:245–259. doi: 10.1016/0031-9201(77)90107-8 CrossRefGoogle Scholar
  39. Mandeville C, Carey S, Sigurdsson H, King J (1994) Paleomagnetic evidence for high-temperature emplacement of the 1883 subaqueous pyroclastic flows from Krakatau Volcano, Indonesia. J Geophys Res 99:9487–9504. doi: 10.1029/94jb00239 CrossRefGoogle Scholar
  40. Mastrolorenzo G, Petrone PP, Pagano M, Incoronato A, Baxter PJ, Canzanella A, Fattore L (2001) Herculaneum victims of Vesuvius in AD 79. Nature 410:769–770. doi: 10.1038/35071167 CrossRefGoogle Scholar
  41. Maury R (1971) Application de la spectrometrie infra-rouge a l’etude des bois fossilises dans les formations volcaniques. Bull Soc Geol Fr 5:280Google Scholar
  42. McClelland E, Druitt DH (1989) Palaeomagnetic estimates of emplacement temperatures of pyroclastic deposits on Santorini, Greece. Bull Volcanol 51:16–27. doi: 10.1007/BF01086758 CrossRefGoogle Scholar
  43. McClelland E, Erwin PS (2003) Was a dacite dome implicated in the 9,500 BP collapse of Mt Ruapehu? A palaeomagnetic investigation. Bull Volcanol 65:294–305. doi: 10.1007/s00445-002-0261-y CrossRefGoogle Scholar
  44. McClelland E, Thomas R (1993) A palaeomagnetic study of Minoan age tephra from Thera. In: Hardy D (ed) Thera and the Aegean world III vol 2. Thera Foundation, London, pp 129–138Google Scholar
  45. McClelland E, Wilson CJN, Bardot L (2004) Palaeotemperature determinations for the 1.8-ka Taupo ignimbrite, New Zealand, and implications for the emplacement history of a high-velocity pyroclastic flow. Bull Volcanol 66:492–513. doi: 10.1007/s00445-003-0335-5 CrossRefGoogle Scholar
  46. McFadden PL, McElhinny MW (1990) Classification of the reversal test in palaeomagnetism. Geophys J Int 103:725–729. doi: 10.1111/j.1365-246X.1990.tb05683.x CrossRefGoogle Scholar
  47. Moore JD, Geissman JW, Smith GA (1997) Paleomagnetic emplacement-temperature and thermal-profile estimates for nonwelded pyroclastic-flow deposits, Miocene Peralta Tuff, Jemez Mountains, New Mexico. EOS Trans AGU 78:178CrossRefGoogle Scholar
  48. Mullineaux DR, Crandell DR (1962) Recent lahars from Mount St. Helens, Washington. Geol Soc Amer Bull 73:855–870CrossRefGoogle Scholar
  49. Néel L (1949) Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann Geophys 5:99–136Google Scholar
  50. Oppenheimer C, Glaze LS, Francis PW, Rothery DA, Carlton RWT (1993) Infrared image analysis of volcanic thermal features: Láscar Volcano, Chile, 1984–1992. J Geophys Res 98:4269–4286. doi: 10.1029/92jb02134 CrossRefGoogle Scholar
  51. Pares JM, Marti J, Garces M (1993) Thermoremanence in red sandstone clasts and emplacement temperature of a Quaternary pyroclastic deposit (Catalan Volcanic Zone, NE Spain). Stud Geophys Geod 37:401–414CrossRefGoogle Scholar
  52. Petrovský E, Kapička A (2006) On determination of the Curie point from thermomagnetic curves. J Geophys Res 111:B12S27. doi: 10.1029/2006JB004507 CrossRefGoogle Scholar
  53. Porreca M, Giordano G, Mattei M, Musacchio P (2006) Evidence of two Holocene phreatomagmatic eruptions at Stromboli volcano (Aeolian Islands) from paleomagnetic data. Geophys Res Lett 33:L21316. doi: 10.1029/2006GL027575 CrossRefGoogle Scholar
  54. Porreca M, Mattei M, Mac Niocaill C, Giordano G, McClelland E, Funiciello R (2007) Paleomagnetic evidence for low-temperature emplacement of the phreatomagmatic Peperino Albano ignimbrite (Colli Albani volcano, Central Italy). Bull Volcanol 70:877–893. doi: 10.1007/s00445-007-0176-8 CrossRefGoogle Scholar
  55. Pullaiah G, Irving E, Buchan KL, Dunlop DJ (1975) Magnetization changes caused by burial and uplift. Earth Planet Sci Lett 28:133–143. doi: 10.1016/0012-821X(75)90221-6 CrossRefGoogle Scholar
  56. Rayleigh L (1919) On a problem of vibrations, and of random flights in one, two and three dimensions. Phila Mag 37:321–347Google Scholar
  57. Saito T, Ishikawa N, Kamata H (2003) Identification of magnetic minerals carrying NRM in pyroclastic-flow deposits. J Volcanol Geotherm Res 126:127–142. doi: 10.1016/S0377-0273(03)00132-X CrossRefGoogle Scholar
  58. Saucedo R, Macías JL, Bursik MI, Mora JC, Gavilanes JC, Cortes A (2002) Emplacement of pyroclastic flows during the 1998–1999 eruption of Volcán de Colima, Mexico. J Volcanol Geotherm Res 117:129–153. doi: 10.1016/S0377-0273(02)00241-X CrossRefGoogle Scholar
  59. Saucedo R, Macías JL, Bursik MI (2004) Pyroclastic flow deposits of the 1991 eruption of Volcán de Colima, Mexico. Bull Volcanol 66:291–306. doi: 10.1007/s00445-003-0311-0 CrossRefGoogle Scholar
  60. Saucedo R, Macías JL, Sheridan MF, Bursik MI, Komorowski JC (2005) Modeling of pyroclastic flows of Colima Volcano, Mexico: implications for hazard assessment. J Volcanol Geotherm Res 139:103–115. doi: 10.1016/j.jvolgeores.2004.06.019 CrossRefGoogle Scholar
  61. Sawada Y, Sampei Y, Hyodo M, Yagami T, Fukue M (2000) Estimation of emplacement temperatures of pyroclastic flows using H/C ratios of carbonized wood. J Volcanol Geotherm Res 104:1–20. doi: 10.1016/S0377-0273(00)00196-7 CrossRefGoogle Scholar
  62. Shcherbakova VV, Shcherbakov VP, Heider F (2000) Properties of partial thermoremanent magnetization in pseudosingle domain and multidomain magnetite grains. J Geophys Res 105:767–781. doi: 10.1029/1999JB900235 CrossRefGoogle Scholar
  63. Smith GA, Grubensky MJ, Geissman JW (1999) Nature and origin of cone-forming volcanic breccias in the Te Herenga Formation, Ruapehu, New Zealand. Bull Volcanol 61:64–82. doi: 10.1007/s004450050263 CrossRefGoogle Scholar
  64. Smithsonian Institution (1980) Mount St. Helens. Scientific Event Alert Network (SEAN) Bulletin 5Google Scholar
  65. Smithsonian Institution (1993) Láscar. Scientific Event Alert Network (SEAN) Bulletin 18Google Scholar
  66. Sparks RSJ, Gardeweg MC, Calder ES, Matthews SJ (1997) Erosion by pyroclastic flows on Láscar volcano Chile. Bull Volcanol 58:557–565. doi: 10.1007/s004450050162 CrossRefGoogle Scholar
  67. Sulpizio R, Mele D, Dellino P, La Volpe L (2005) A complex, Subplinian-type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy. Bull Volcanol 67:743–767. doi: 10.1007/s00445-005-0414-x CrossRefGoogle Scholar
  68. Sulpizio R, Mele D, Dellino P, La Volpe L (2007) Deposits and physical properties of pyroclastic density currents during complex Subplinian eruptions: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy. Sedimentology 54:607–635. doi: 10.1111/j.1365-3091.2006.00852.x CrossRefGoogle Scholar
  69. Sulpizio R, Zanella E, Macías JL (2008) Deposition temperature of some PDC deposits from the 1982 eruption of El Chichón volcano (Chiapas, Mexico) inferred from rock-magnetic data. J Volcanol Geotherm Res 175:494–500. doi: 10.1016/j.jvolgeores.2008.02.024 CrossRefGoogle Scholar
  70. Tamura Y, Koyama M, Fiske RS (1991) Paleomagnetic evidence for hot pyroclastic debris flow in the shallow submarine Shirahama Group (Upper Miocene-Pliocene) Japan. J Geophys Res 96:21779–21787. doi: 10.1029/91jb02258 CrossRefGoogle Scholar
  71. Tanaka H, Hoshizumi H, Iwasaki Y, Shibuya H (2004) Applications of paleomagnetism in the volcanic field: a case study of the Unzen Volcano, Japan. Earth Planets Space 56:635–647Google Scholar
  72. Tanguy J-C, Le Goff M, Principe C, Arrighi S, Chillemi V, Paiotti A, La Delfa S, Patanè G (2003) Archeomagnetic dating of Mediterranean volcanics of the last 2100 years: validity and limits. Earth Planet Sci Lett 211:111–124. doi: 10.1016/S0012-821X(03)00186-9 CrossRefGoogle Scholar
  73. Tanguy J-C, Ribiere C, Scarth A, Tjetjep WS (1998) Victims from volcanic eruptions: a revised database. Bull Volcanol 60:137–144. doi: 10.1007/s004450050222 CrossRefGoogle Scholar
  74. Tarling DH (1983) Palaeomagnetism: principles and applications in geology, geophysics and archaeology. Chapman and Hall, LondonGoogle Scholar
  75. Tsuboi S, Tsuya H (1930) On the temperature of the pumiceous ejecta of Komagatake, Hokkaidò, as inferred from their modes of oxidation. Bull Earthq Res Inst Univ Tokyo 8:271–273Google Scholar
  76. Voight B, Davis MJ (2000) Emplacement temperatures of the November 22, 1994 nuée ardente deposits, Merapi Volcano, Java. J Volcanol Geotherm Res 100:371–377. doi: 10.1016/S0377-0273(00)00146-3 CrossRefGoogle Scholar
  77. Witham CS (2005) Volcanic disasters and incidents: a new database. J Volcanol Geotherm Res 148:191–233. doi: 10.1016/j.jvolgeores.2005.04.017 CrossRefGoogle Scholar
  78. Wooster MJ (2001) Long-term infrared surveillance of Láscar Volcano: contrasting activity cycles and cooling pyroclastics. Geophys Res Lett 28:847–850. doi: 10.1029/2000gl011904 CrossRefGoogle Scholar
  79. Wooster MJ, Rothery DA (1997) Thermal monitoring of Láscar volcano, Chile, using infrared data from the along-track scanning radiometer: a 1992–1995 time series. Bull Volcanol 58:566–579. doi: 10.1007/s004450050163 CrossRefGoogle Scholar
  80. Wooster MJ, Carlton RWT, Rothery DA, Sear CB (1998) Monitoring the development of active lava domes using data from the ERS-1 along track scanning radiometer. Adv Space Res 21:501–505. doi: 10.1016/S0273-1177(97)00887-9 CrossRefGoogle Scholar
  81. Wright J (1978) Remanent magnetism of poorly sorted deposits from the Minoan eruption of Santorini. Bull Volcanol 41:131–135. doi: 10.1007/BF02597026 CrossRefGoogle Scholar
  82. Xu WX, Peacor DR, VanderVoo R, Dollase W, Beaubouef R (1996) Modified lattice parameter Curie temperature diagrams for titanomagnetite/titanomaghemite within the quadrilateral Fe3O4–Fe2TiO4–Fe2O3–Fe2TiO5. Geophys Res Lett 23:2811–2814. doi: 10.1029/96GL01117 CrossRefGoogle Scholar
  83. Yamazaki T, Kato I, Muroi I, Abe M (1973) Textural analysis and flow mechanism of the Donzurubo subaqueous pyroclastic flow deposits. Bull Volcanol 37:231–244. doi: 10.1007/BF02597132 CrossRefGoogle Scholar
  84. Zanella E, De Astis G, Lanza R (2001) Palaeomagnetism of welded, pyroclastic-fall scoriae at Vulcano, Aeolian Archipelago. J Volcanol Geotherm Res 107:71–86. doi: 10.1016/S0377-0273(00)00298-5 CrossRefGoogle Scholar
  85. Zanella E, Gurioli L, Pareschi MT, Lanza R (2007) Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 2. Temperature of the deposits and hazard implications. J Geophys Res 112:B05214. doi: 10.1029/2006JB004775 CrossRefGoogle Scholar
  86. Zanella E, Gurioli L, Lanza R, Sulpizio R, Bontempi M (2008) Deposition temperature of the AD 472 Pollena pyroclastic density current deposits, Somma-Vesuvius, Italy. Bull Volcanol 70:1237–1248. doi: 10.1007/s00445-008-0199-9 CrossRefGoogle Scholar
  87. Zijderveld JDA (1967) AC demagnetization of rocks: analysis of results. In: Collinson DW, Creer KM, Runcorn SK (eds) Methods in palaeomagnetism. Elsevier, New York, pp 256–286Google Scholar
  88. Zlotnicki J, Pozzi JP, Boudon G, Moreau MG (1984) A new method for the determination of the setting temperature of pyroclastic deposits (example of Guadeloupe–French-West-Indies). J Volcanol Geotherm Res 21:297–312. doi: 10.1016/0377-0273(84)90027-1 CrossRefGoogle Scholar
  89. Zobin VM, Luhr JF, Taran YA, Bretón M, Cortés A, De La Cruz-Reyna S, Domínguez T, Galindo I, Gavilanes JC, Muñíz JJ, Navarro C, Ramírez JJ, Reyes GA, Ursúa M, Velasco J, Alatorre E, Santiago H (2002) Overview of the 1997–2000 activity of Volcán de Colima, México. J Volcanol Geotherm Res 117:1–19. doi: 10.1016/S0377-0273(02)00232-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Greig A. Paterson
    • 1
    Email author
  • Andrew P. Roberts
    • 1
  • Conall Mac Niocaill
    • 2
  • Adrian R. Muxworthy
    • 3
  • Lucia Gurioli
    • 4
  • José G. Viramonté
    • 5
  • Carlos Navarro
    • 6
  • Shoshana Weider
    • 2
  1. 1.National Oceanography CentreUniversity of SouthamptonSouthamptonUK
  2. 2.Department of Earth SciencesUniversity of OxfordOxfordUK
  3. 3.Department of Earth Science and EngineeringImperial CollegeLondonUK
  4. 4.Department of Geology and Geophysics, SOESTUniversity of HawaiiHonoluluUSA
  5. 5.Instituto GeonorteUniversidad Nacional de SaltaSaltaRepública Argentina
  6. 6.Observertorio VulcanólogicoUniversidad de ColimaColimaMexico

Personalised recommendations