Bulletin of Volcanology

, Volume 72, Issue 3, pp 341–356 | Cite as

A comparison of field- and satellite-derived thermal flux at Piton de la Fournaise: implications for the calculation of lava discharge rate

  • D. Coppola
  • M. R. James
  • T. Staudacher
  • C. Cigolini
Research Article

Abstract

We present thermal measurements made by high spatial resolution ground-based (a hand-held thermal camera) and low spatial resolution space-based (MODIS) instruments for a lava flow field active during the last phase of the May–July 2003 eruption at Piton de la Fournaise (La Réunion). Multiple oblique ground-based thermal images were merged to provide full coverage of the flow-field. These were then corrected for path length attenuation and orthorectified, allowing the at-surface radiance emitted by the flow-field to be estimated. Comparison with the radiance recorded by the MODIS sensors during the eruption reveals that, for clear-sky conditions and moderate-to-low viewing angles (satellite zenith <40°), the satellite measurements represent ∼90% of the at-surface radiance, and thus represent valuable data for quantifying volcanic thermal anomalies. Nevertheless, extreme viewing geometries and the presence of clouds strongly affect the radiance reaching the sensor and affected data from 94% of the overpasses. Ground-based thermal data were used to investigate an empirical relationship between the radiant heat flux and lava discharge rate during the emplacement of pahoehoe flows. While the average radiation temperature for flow surface that were 6–24 h old ranged between 500 K and 625 K, the ratio between radiative heat flux and Time-Averaged lava Discharge Rate (TADR) ranged between 1.5 × 108 J m−3 and 3.5 × 108 J m−3. This relationship was used to estimate TADR values from optimal MODIS data and produced results in line with those obtained from GPS surveys (Coppola et al. 2005). Our results underscore the importance of ground-based thermal analysis for the interpretation of satellite measurements, particularly in terms of calculating discharge rate trends.

Keywords

Piton de la Fournaise MODIS Field-based thermal imaging Lava discharge rate 

Notes

Acknowledgements

The research was funded by the Italian Ministry for Universities and Research (MIUR). Additional funds to D.C. were provided by the European Research Training Network (EU-RTN). MRJ was supported by the Royal Society and Stuart Robson is thanked for his ongoing support with VMS. We acknowledge Edouard Kaminsky, Alain Bonneville, Fabrizio Ferrucci and Barbara Hirn for useful discussions on the interpretation of field and satellite thermal data, Rob Wright for the discussions about MODVOLC data and the MODIS Alert Team (http://modis.higp.hawaii.edu/) for providing the basis of this work. MODIS level 1 products were obtained from NASA (http://ladsweb.nascom.nasa.gov/). We thank Matthew Patrick and an anonymous reviewer for their very constructive comments, Davide Piscopo for assistance in processing MODIS data, and Philippe Catherine and Philippe Kowalsky for support during fieldwork. Instrumental and logistic support was kindly provided by the Observatoire Volcanologique du Piton de la Fournaise (http://ovpf.univ-reunion.fr/).

References

  1. Albarède F, Luais B, Fitton G, Semet M, Kaminski E, Upton BGJ, Bachèlery P, Cheminee JL (1997) The geochemical regimes of Piton de la Fournaise volcano (Réunion) during the last 530 000 years. J Petrol 38:171–201CrossRefGoogle Scholar
  2. Bailey JE, Harris AJL, Dehn J, Calvari S, Rowland SK (2006) The changing morphology of an open lava channel on Mt Etna. Bull Volcanol 68:497–515. doi: 101007/s00445-005-0025-6 CrossRefGoogle Scholar
  3. Ball M, Pinkerton H (2006) Factors affecting the accuracy of thermal imaging cameras in volcanology. J Geophys Res 111:B11203. doi: 10.1029/2005JB003829 CrossRefGoogle Scholar
  4. Battaglia J, Aki K, Staudacher T (2005) Location of tremor sources and estimation of lava output using tremor source amplitude on the Piton de la Fournaise volcano: 2. Estimation of lava output. J Volcanol Geotherm Res 147:291–308CrossRefGoogle Scholar
  5. Cahoon DR Jr, Stocks BJ, Levine JS, Cofer WR III, O’Neill KP (1992) Seasonal distribution of African savanna fires. Nature 245:812–815CrossRefGoogle Scholar
  6. Calvari S, Pinkerton H (2004) Birth, growth and morphologic evolution of the ‘Laghetto’ cinder cone during the 2001 Etna eruption. J Volcanol Geotherm Res 132:225–239CrossRefGoogle Scholar
  7. Calvari S, Lodato L, Burton MR, Andronico D (2003) Dike emplacement at Mount Etna before the 2002 flank eruption revealed by surveys with a portable thermal camera. EGS—AGU—EUG Joint Assembly abstract #5329, Nice, France, 6–11 April 2003Google Scholar
  8. Cashman KV, Kerr RC, Griffiths RW (2006) A laboratory model of surface crust formation and disruption on lava flows through non-uniform channels. Bull Volcanol 68:753–770CrossRefGoogle Scholar
  9. Coppola D, Staudacher T, Cigolini C (2005) The May-July eruption at Piton de la Fournaise (La Réunion): volume, effusion rates and emplacement mechanisms inferred by thermal imaging and GPS survey. In: Manga M, Ventura G (eds) Kynematics and dynamics of lava flows. Geol Soc Am Spec Pap 396:103–124Google Scholar
  10. Coppola D, Staudacher T, Cigolini C (2007) Field thermal monitoring during the August 2003 eruption at Piton de la Fournaise (La Réunion). J Geophys Res 112:B05215. doi: 10.1029/2006JB004659 CrossRefGoogle Scholar
  11. Coppola D, Piscopo D, Staudacher T, Cigolini C (2009) Lava discharge rate and effusive pattern at Piton de la Fournaise from MODIS data. J Volcanol Geotherm Res 184:174–192CrossRefGoogle Scholar
  12. Dehn J, Dean K, Engle K, Izbekov P (2002) Thermal precursors in satellite images of the 1999 eruption of Shishaldin Volcano. Bull Volcanol 64:525–534CrossRefGoogle Scholar
  13. Eustice R, Pizarro O, Singh H, Howland J (2002) UWIT: underwater image toolbox for optical image processing and mosaicking in MATLAB. Proc Int Symp Underwater Technol 2002:141–145. doi: 10.1109/UT.2002.1002415 CrossRefGoogle Scholar
  14. Galindo I, Domínguez T (2002) Near real-time satellite monitoring during the 1997–2000 activity of Volcán de Colima (México) and its relationship with seismic monitoring. J Volcanol Geotherm Res 117:91–104CrossRefGoogle Scholar
  15. GVN (2003) Piton de la Fournaise. Bull Global Volcanism Network 28(6):8Google Scholar
  16. Harris AJL, Ripepe M (2007) Regional earthquake as a trigger for enhanced volcanic activity: evidence from MODIS thermal data. Geophys Res Lett 34:L02304. doi: 10.1029/2006GL028251 CrossRefGoogle Scholar
  17. Harris AJL, Butterworth AL, Carlton RW, Downey I, Miller P, Navarro P, Rothery DA (1997a) Low-cost volcano surveillance from space: case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus. Bull Volcanol 59:49–64CrossRefGoogle Scholar
  18. Harris AJL, Blake S, Rothery DA, Stevens NF (1997b) A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: implications for real-time thermal volcano monitoring. Geophys Res Lett 102:7985–8003Google Scholar
  19. Harris AJL, Flynn LP, Keszthelyi L, Mouginis-Mark PJ, Rowland SK, Resing JA (1998) Calculation of lava effusion rates from Landsat TM data. Bull Volcanol 60:52–71CrossRefGoogle Scholar
  20. Harris AJL, Flynn LP, Rothery DA, Oppenheimer C, Sherman SB (1999a) Mass flux measurements at active lava lakes: implications for magma recycling. J Geophys Res 104:7117–7136CrossRefGoogle Scholar
  21. Harris AJL, Wright R, Flynn LP (1999b) Remote monitoring of Mount Erebus volcano, Antarctica, using polar orbiters: progress and prospects. Int J Rem Sens 20:3051–3071CrossRefGoogle Scholar
  22. Harris AJL, Murray JB, Aries SE, Davies MA, Flynn LP, Wooster MJ, Wright R, Rothery DA (2000) Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. J Volcanol Geotherm Res 102:237–269CrossRefGoogle Scholar
  23. Harris AJL, Flynn LP, Matias O, Rose WI (2002) The thermal stealth flows of Santiaguito: Implications for the cooling and emplacement of dacitic block lava flows. Geol Soc Am Bull 114:533–546CrossRefGoogle Scholar
  24. Harris AJL, Rose WI, Flynn LP (2003) Temporal trends in lava dome extrusion at Santiaguito 1922–2000. Bull Volcanol 65:77–89Google Scholar
  25. Harris AJL, Pirie D, Horton K, Garbeil H, Pilger E, Hans RH, Hoblitt R, Thornber C, Ripete M, Marchetti E, Poggi P (2005a) DUCKS: low cost thermal monitoring units for near-vent deployment. J Volcanol Geotherm Res 143:335–360CrossRefGoogle Scholar
  26. Harris AJL, Dehn J, Patrick M, Calvari S, Ripepe M, Lodato L (2005b) Lava effusion rates from handheld thermal infrared imagery: an example from the June 2003 effusive activity at Stromboli. Bull Volcanol 68:107–117CrossRefGoogle Scholar
  27. Harris AJL, Bailey J, Calvari S, Dehn J (2005c) Heat loss measured at a lava channel and its implications for down-channel cooling and rheology. In Manga M, Ventura G (eds) Kinematics and dynamics of lava flows. Geol Soc Am Spec Pap 396:125–146Google Scholar
  28. Harris AJL, Dehn J, Calvari S (2007a) Lava effusion rate definition and measurement: a review. Bull Volcanol 70:1–22CrossRefGoogle Scholar
  29. Harris AJL, Dehn J, James MR, Hamilton C, Herd R, Lodato L, Steffke A (2007b) Pāhoehoe flow cooling, discharge, and coverage rates from thermal image chronometry. Geophys Res Lett 34:L19303. doi: 10.1029/2007GL030791 CrossRefGoogle Scholar
  30. Hon K, Kauahikaua J, Denlinger R, McKay K (1994) Emplacement and inflations of pahoeohe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 106:351–370CrossRefGoogle Scholar
  31. James MR, Robson S, Pinkerton H, Ball M (2006) Oblique photogrammetry with visible and thermal images of active lava flows. Bull Volcanol 69:105–108. doi: 10.1007/s00445-006-0062-9 CrossRefGoogle Scholar
  32. James MR, Pinkerton H, Robson S (2007) Image-based measurement of flux variation in distal regions of active lava flows. Geochem Geophys Geosys 8:Q03005. doi: 10.1029/2006GC001465 CrossRefGoogle Scholar
  33. Justice C, Giglio L, Boschetti L, Roy D, Csiszar I, Morisette J, Kaufman Y (2006) Modis fire products, algorithm Technical Background Document available on line (http://modis.gsfc.nasa.gov/data/atbd/atbd_mod14.pdf)
  34. Kaneko T, Wooster MJ, Nakada S (2002) Exogenous and endogenous growth of the Unzen lava dome examined by satellite infrared image analysis. J Volcanol Geotherm Res 116:151–160CrossRefGoogle Scholar
  35. Kauahikaua J, Sherrod DR, Cashman KV, Heliker C, Hon K, Mattox TN, Johnson JA (2003) Hawaiian lava-flow dynamics during the Pu’u ‘O’o- Kupaianaha eruption: a tale of two decades. US Geol Surv Prof Pap 1676:63–88Google Scholar
  36. Kaufman YJ, Justice CO, Flynn, LP, Kendall JD, Prins EM, Giglio L,Ward DE, Menzel WP, Setzer AW (1998) Potential global fire monitoring from EOS-MODIS. J Geophys Res 103:32215–32238Google Scholar
  37. Liu RG, Liu JY, Liang S (2006) Estimation of systematic errors of MODIS thermal infrared bands. Geosci Rem Sens Lett 3:541–545. doi: 10.1109/LGRS.2006.879104 CrossRefGoogle Scholar
  38. Lodato L, Spampinato L, Harris AJL, Calvari S, Dehn J, Patrick M (2007) The morphology and evolution of the Stromboli 2002–2003 lava flow field: an example of a basaltic flow field emplaced on a steep slope. Bull Volcanol 69:661–679. doi: 10.1007/s00445-006-0101-6 CrossRefGoogle Scholar
  39. Nishihama M, Wolfe R, Solomon D, Patt F, Blanchette J, Fleig A, Masuoka E (1997) MODIS level 1A earth location. Algorithm Theoretical Basis Document Version 3.0 available on line (http://modis.gsfc.nasa.gov/data/atbd/atbd_mod28_v3.pdf)
  40. Oppenheimer C, McGonigle AJS, Allard P, Wooster MJ, Tsanev V (2004) Sulfur, heat, and magma budget of Erta ‘Ale lava lake, Ethiopia. Geology 32:509–512CrossRefGoogle Scholar
  41. Patrick M, Smellie JL, Harris AJL, Wright R, Dean K, Izbekov P, Garbeil H, Pilger E (2005) First recorded eruption of Mount Belinda volcano (Montagu Island), South Sandwich Islands. Bull Volcanol 67:415–422CrossRefGoogle Scholar
  42. Patrick MR, Harris AJL, Ripepe M, Dehn J, Rothery D, Calvari S (2007) Strombolian explosive styles and source conditions: Insights from thermal (FLIR) video. Bull Volcanol 69:769–784. doi: 10.1007/s00445-006-0107-0 CrossRefGoogle Scholar
  43. Pieri DC, Baloga SM (1986) Eruption rate, area, and length relationships for some Hawaiian lava flows. J Volcanol Geotherm Res 30:29–45CrossRefGoogle Scholar
  44. Ripepe M, Marchetti M, Ulivieri G, Harris A, Dehn J, Burton M, Caltabiano T, Salerno G (2005) Effusive to explosive transition during the 2003 eruption of Stromboli volcano. Geology 33:341–344CrossRefGoogle Scholar
  45. Rothery DA, Coppola D, Saunders C (2005) Analysis of volcanic activity patterns using MODIS thermal alerts. Bull Volcanol 67:539–556CrossRefGoogle Scholar
  46. Spampinato L, Calvari S, Oppenheimer C, Lodato L (2008) Shallow magma transport for the 2002–3 Mt. Etna eruption inferred from thermal infrared surveys. J Volcanol Geotherm Res 177:301–312. doi: 10.1016/j.jvolgeores.2008.05.013 Google Scholar
  47. Thornber CR, Sherrod DR, Siems DF, Heliker CC, Meeker GP, Oscarson RL, Kauahikaua JP (2002) Whole-rock and glass major-element chemistry of Kilauea Volcano, Hawaii, near-vent eruptive products: September 1994 through September 2001. US Geol Surv Open-file Rep 02–17:1–9 (available at http://geopubs.wr.usgs.gov/open-file/of02-017)
  48. Wooster MJ, Rothery DA, Kaneko T (1998) Geometric considerations for the remote monitoring of volcanoes: studies of lava domes using ATSR and the implications for MODIS. Int J Rem Sens 19:2585–2591CrossRefGoogle Scholar
  49. Wright R, Flynn L (2004) Space-based estimate of the volcanic heat flux into the atmosphere during 2001 and 2002. Geology 32:189–192CrossRefGoogle Scholar
  50. Wright R, Blake S, Harris AJL, Rothery DA (2001) A simple explanation for the space-based calculation of lava eruption rates. Earth Planet Sci Lett 192:223–233CrossRefGoogle Scholar
  51. Wright R, Flynn L, Garbeil H, Harris AJL, Pilger E (2002) Automated volcanic eruption detection using MODIS. Rem Sens Envir 82:135–155CrossRefGoogle Scholar
  52. Wright R, Flynn L, Garbeil H, Harris AJL, Pilger E (2004) MODVOLC: near-real-time thermal monitoring of global volcanism. J Volcanol Geotherm Res 135:29–49CrossRefGoogle Scholar
  53. Xiong X, Isaacman A, Barnes W (2006) MODIS level-1B products. In: Qu JJ, Gao W, Kafatos M, Murphy RE, Salomonson VV (eds) Earth science satellite remote sensing, Spinger-Verlag, Berlin Heidelberg, pp 33–49. doi: 10.1007/978-3-540-37293-6_3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • D. Coppola
    • 1
  • M. R. James
    • 2
  • T. Staudacher
    • 3
  • C. Cigolini
    • 1
  1. 1.Dipartimento di Scienze Mineralogiche e PetrologicheUniversità di TorinoTorinoItaly
  2. 2.Department of Environmental Science, Lancaster Environment CentreLancaster UniversityLancasterUK
  3. 3.Observatoire Volcanologique du Piton de la FournaiseLa RéunionFrance

Personalised recommendations