Advertisement

Bulletin of Volcanology

, Volume 72, Issue 3, pp 259–278 | Cite as

Tephra dispersal and eruption dynamics of wet and dry phases of the 1875 eruption of Askja Volcano, Iceland

  • R. J. Carey
  • B. F. Houghton
  • T. Thordarson
Research Article

Abstract

The 1875 rhyolitic eruption of Askja volcano in Iceland was a complex but well-documented silicic explosive eruption. Eyewitness chronologies, coupled with examination of very proximal exposures and historical records of distal deposit thickness, provide an unusual opportunity for study of Plinian and phreatoplinian eruption and plume dynamics. The ∼ 17 hour-long main eruption was characterized by abrupt and reversible shifts in eruption style, e.g., from ‘wet’ to ‘dry’ eruption conditions, and transitions from fall to flow activity. The main eruption began with a ‘dry’ subplinian phase (B), followed by a shift to a very powerful phreatoplinian ‘wet’ eruptive phase (C1). A shift from sustained ‘wet’ activity to the formation of ‘wet’ pyroclastic density currents followed with the C2 pyroclastic density currents, which became dryer with time. Severe ground shaking accompanied a migration in vent position and the onset of the intense ‘dry’ Plinian phase (D). Each of the fall units can be modeled using the segmented exponential thinning method (Bonadonna et al. 1998), and three to five segments have been recognized on a semilog plot of thickness vs. area1/2. The availability of very proximal and far-distal thickness data in addition to detailed observations taken during this eruption has enabled calculations of eruption parameters such as volumes, intensities and eruption column heights. This comprehensive dataset has been used here to assess the bias of volume calculations when proximal and distal data are missing, and to evaluate power-law and segmented exponential thinning methods using limited datasets.

Keywords

Askja 1875 Phreatoplinian Plinian Eruption dynamics Tephra dispersal 

References

  1. Adams NK, Da Silva SL, Self S, Salas G, Schubring S, Permenter JL, Arbesman K (2001) The physical volcanology of the 1600 eruption of Huaynaputina, southern Peru. Bull Volcanol 62:493–518CrossRefGoogle Scholar
  2. Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81:173–187CrossRefGoogle Scholar
  3. Bonadonna C, Phillips J (2003) Sedimentation from strong volcanic plumes. J Geophys Res 108:2340–2368CrossRefGoogle Scholar
  4. Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra fall deposits. Bull Volcanol 67:441–456CrossRefGoogle Scholar
  5. Boygle JE (2004) Towards a Holocene tephrachronology for Sweden: geochemistry and correlation with the North Atlantic tephra stratigraphy. J Quat Sci 19:103–109CrossRefGoogle Scholar
  6. Branca S, Del Carlo P (2005) Types of eruptions of Etna volcano AD 1670–2003: Implications for short-term behavior. Bull Volcanol 67:732–742CrossRefGoogle Scholar
  7. Brandsdottir B (1992) Historical accounts of earthquakes associated with eruptive activity in the Askja volcanic system. Jökull 42:1–12Google Scholar
  8. Carey RJ, Houghton BF, Thordarson TT (2008a) Complex welding of proximal Plinian deposits I: Regional welding. (in press). J Volcanol Geotherm Res 171:1–19CrossRefGoogle Scholar
  9. Carey RJ, Houghton BF, Thordarson TT (2008b) Complex welding of proximal Plinian deposits II: Local welding. (in press). J Volcanol Geotherm Res 171:20–44CrossRefGoogle Scholar
  10. Carey SN, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St Helens volcano. J Geophys Res 87:7061–7072CrossRefGoogle Scholar
  11. Carey SN, Sigurdsson H (1985) The May 18, 1980 eruption of Mount St-Helens.2. Modeling of dynamics of the Plinian phase. J Geophys Res 90:2948–2958CrossRefGoogle Scholar
  12. Carey SN, Sparks RSJ (1986) Quantitative models of fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125CrossRefGoogle Scholar
  13. Carey S, Sigurdsson H (1987) Temporal variations in column height and magma discharge rate during the 79 A.D. eruption of Vesuvius. Geol Soc Am Bull 99:303–314CrossRefGoogle Scholar
  14. Cole PD, Queiroz G, Wallenstein N, Gaspar JL, Duncan AM, Guest JE (1995) An historic subplinian/phreatomagmatic eruption; the 1630 AD eruption of Furnas volcano, Sao Miguel, Azores. J Volcanol Geotherm Res 69:117–135CrossRefGoogle Scholar
  15. Dartayet M (1932) Observacíon de la lluvia de cenizas del 11 de abril de 1932 en LaPlata. Rev Astron (Buenos Aires) 4:183–187Google Scholar
  16. Fierstein J, Hildreth W (1992) The Plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bull Volcanol 54:646–684CrossRefGoogle Scholar
  17. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167CrossRefGoogle Scholar
  18. Gudmundsson A, Oskarsson N, Gronvold K, Saemundsson K, Sigurdsson O, Stefansson R, Gislason SR, Einarsson P, Brandsdottir B, Larsen G, Johannesson H, Thordarson T (1992) Hekla 1991 eruption. Bull Volcanol 54:238–246Google Scholar
  19. Hayakawa Y (1990) Mode of eruption and deposition of the Hachinohe phreatoplinian Ash from the Towada Volcano, Japan. Geogr Rep Tokyo Metropolitan Univ 25:167–182Google Scholar
  20. Hildreth W, Drake RE (1992) Volcano Quizapu, Chilean Andes. Bull Volcanol 54:93–125CrossRefGoogle Scholar
  21. Höskuldsson Á, Óskarsson N, Pederson R, Grönvold K, Vogfjörð K, Ólafsdóttir R (2007) The millennium eruption of Hekla in February 2000. Bull Volcanol 70:169–182CrossRefGoogle Scholar
  22. Houghton BF, Wilson CJN, Fierstein J, Hildreth W (2004) Complex proximal deposition during the Plinian eruptions of 1912 at Novarupta, Alaska. Bull Volcanol 66:95–133CrossRefGoogle Scholar
  23. Inman DL (1952) Measures for describing the size distribution of sediments. J Sed Petrol 22:125–145Google Scholar
  24. Jöhnstrup F (1876). Det danske geografiske Selskabs Tidsskrift 1ste Bind Side 58– 59Google Scholar
  25. Jöhnstrup F (1877). Indberetning om den af Professor Johnstrup foretagne Undersögelsesreise paa Island i Sommerem 1876 (hermed 2 kort og 2 tegninger), Særskilt? Aftryk af Rigsdagstidenden for den 29de ordentlig Samling 1876–77, Tillæg B. J.H. Schultz, Köbenhavn, Sp. 899–926Google Scholar
  26. Lunkenheimer F (1932) La erupción del Quizapu en abril de 1932. Rev Astron (Buenos Aires) 4:173–182Google Scholar
  27. Manville V, Hodgson KA, Houghton BF, Keys JR, White JDL (2000) Tephra, snow and water: complex sedimentary responses at an active snow-capped stratovolcano, Ruapehu, New Zealand. Bull Volcanol 62:278–293CrossRefGoogle Scholar
  28. McKee C, Johnson RW, Lowenstein PL, Riley SJ, Blong RJ, Ours DeSaint, Talai B (1985) Rabaul caldera, Papua New Guinea: volcanic hazards, surveillance, and eruption contingency planning. J Volcanol Geotherm Res 23:195–237CrossRefGoogle Scholar
  29. Mohn H (1878) Askeregnen den 29de-30-te Marts 1875. Forhandlinger I Videnskapsselskabet I Christiania aar 1877 10:89–92Google Scholar
  30. Nordenskiöld AE (1876) Report on Askja ash fall. Aftonbladet, 1st April,1876Google Scholar
  31. Oldfield F, Thompson R, Crooks PRJ, Gedye SJ, Hall VA, Harkness DD, Housley RA, McCormac FG, Newton AJ, Pilcher JR, Renberg I, Richardson N (1997) Radiocarbon dating of a recent high-lattitude peat profile: Stor Amyran, northern Sweden. The Holocene 7:282–290CrossRefGoogle Scholar
  32. Persson C (1971) Tephrachronological investigation of peat deposits in Scandinavia and on the Faeroe Islands. Sveriges Geologiska Undersoknin 65:1–34Google Scholar
  33. Pilcher J, Bradley A, Raymond S, Francus P, Anderson S, Lesleigh (2005) A Holocene tephra record from the Lofoten Islands, Arctic Norway. Boreas 34:136–156CrossRefGoogle Scholar
  34. Pyle DM (1989) The thickness, volume and grain-size of tephra fall deposits. Bull Volcanol 51:1–15CrossRefGoogle Scholar
  35. Pyle DM (1990) New estimates for the volume of the Minoan eruption. Thera and the Aegean World. D. A. Hardy. London, The Thera Foundation. III:113–121Google Scholar
  36. Rosi M, Principe C, Vecci R (1993) The 1631 Vesuvius eruption A reconstruction based on historical and stratigraphical data. J Volcanol Geotherm Res 58:151–182CrossRefGoogle Scholar
  37. Sarna-Wojcicki AM, Shipley S, Waitt RB, Dzurisin D, Wood SH (1981) Areal distribution, thickness, mass, volume and grain size of air-fall ash from the six major eruptions of 1980. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250:577–628Google Scholar
  38. Scasso RA, Corbella H, Tiberi P (1994) Sedimentological analysis of the tephra from the 12–15 August 1991 eruption of Hudson volcano. Bull Volcanol 56:121–132Google Scholar
  39. Self S, Kienle J, Huot JP (1980) Ukinrek Maars, Alaska, II. Deposits and formation of the 1977 craters. J Volcanol Geotherm Res 7:39–65CrossRefGoogle Scholar
  40. Self S, Sparks RSJ (1978) Characteristics of widespread pyroclastic deposits formed by the interaction of silicic magma and water. Bull Volcanol 41:196–212CrossRefGoogle Scholar
  41. Sigurdsson H, Sparks RSJ (1978a) Lateral magma flow within rifted Icelandic crust. Nature. 274:126–130CrossRefGoogle Scholar
  42. Sigurdsson H, Sparks RSJ (1978b) Rifting episode in north Iceland in 1874–1875 and the eruptions of Askja and Sveinagja. Bull Volcanol 41:1–19CrossRefGoogle Scholar
  43. Sigurdsson H, Carey SN, Cornell W, Pescatore T (1985) The eruption of Vesuvius in A.D. 79. Nat Geog Res Explor 1:332–387Google Scholar
  44. Sigvaldason GE (1979) Rifting, magmatic activity, and interaction between acid and basic liquids: The 1875 Askja eruption in Iceland. Report 7903, Nordic Volcanological Institute, Reykjavik, IcelandGoogle Scholar
  45. Sigvaldason GE (2002) Volcanic and tectonic processes coinciding with glaciation and crustal rebound: an early Holocene rhyolitic eruption in the Dyngjufjoll volcanic centre and the formation of the Askja caldera, north Iceland. Bull Volcanol 64:192–205CrossRefGoogle Scholar
  46. Smith RT, Houghton BF (1995a) Delayed deposition of plinian pumice during phreatoplinian volcanism: the 1800-yr-B.P. Taupo eruption, New Zealand. J Volcanol Geotherm Res 67:221–226CrossRefGoogle Scholar
  47. Smith RT, Houghton BF (1995b) Vent migration and changing eruptive style during the 1800a Taupo eruption: new evidence from the Hatepe and Rotongaio phreatoplinian ashes. Bull Volcanol 57:432–439Google Scholar
  48. Smith RT (1998) Models for Units 3 and 4 of the Taupo eruption. PhD thesis, University of Canterbury, Canterbury, New Zealand.Google Scholar
  49. Sorem RK (1982) Volcanic ash clusters: tephra rafts and scavengers. J Volcanol Geotherm Res 13:63–71CrossRefGoogle Scholar
  50. Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of the 1875 eruption of Askja, Iceland. Phil Trans Royal Soc Lond 299:241–273Google Scholar
  51. Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15CrossRefGoogle Scholar
  52. Talbot JP, Self S, Wilson CJN (1994) Dilute gravity current and rain-flushed ash deposits in the 1.8 ka Hatepe Plinian deposit, Taupo, New Zealand. Bull Volcanol 56:538–551CrossRefGoogle Scholar
  53. Thorarinsson S, Sigvaldason GE (1972) The Hekla eruption of 1970. Bull Volcanol 36:269–288CrossRefGoogle Scholar
  54. Thordarson T, Carey RJ, Houghton BF (in prep) Historical accounts of 19th and 20th century volcanic eruptions at the Askja volcano (Iceland) with a special reference to the 1874-1876 volcano-tectonic eventGoogle Scholar
  55. Thoroddsen T (1913) Ferðabók I, pp 255–380Google Scholar
  56. Thoroddsen T (1925) Die Geschichte der Islandischen Vulkane. A. F. Host and Son Konglige Hof-Boghandle, Copenhagen, 458 ppGoogle Scholar
  57. van den Bogaard C, Schmincke HU (2002) Linking the North Atlantic to central Europe: a high-resolution Holocene tephrochronological record from Northern Germany. J Quat Sci 17:3–20CrossRefGoogle Scholar
  58. Watt SFL, Pyle DM, Mather TA, Martin RS, Mattews NE (2009) Fallout and distribution of volcanic ash over Argentina following the May 2008 explosive eruption of Chaitén. Chile. J Geophys Res 114:B04207. doi: 10.1029/2008JB006219 CrossRefGoogle Scholar
  59. Watts WL (1875) Bréf frá herra W. L. Watts (Letter from Mr W. L. Watts). Þjóðólfur, 27:109Google Scholar
  60. Watts WE (1876) Across Vatnajökull. Longmans and Co, London, 106 ppGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Dept. of Geology and GeophysicsUniversity of Hawai`iHonoluluUSA
  2. 2.School of GeoSciencesUniversity of EdinburghEdinburghUK

Personalised recommendations