Advertisement

Bulletin of Volcanology

, Volume 72, Issue 2, pp 131–147 | Cite as

Hydrothermal calderas

  • Olivier MerleEmail author
  • Stéphanie Barde-Cabusson
  • Benjamin van Wyk de Vries
Research Article

Abstract

The standard model of caldera formation is related to the emptying of a magma chamber and ensuing roof collapse during large eruptions or subsurface withdrawal. Although this model works well for numerous volcanoes, it is inappropriate for many basaltic volcanoes (with the notable exception of Hawaii), as these have eruptions that involve volumes of magma that are small compared to the collapse. Many arc volcanoes also have similar oversized depressions, such as Poas (Costa Rica) and Aoba (Vanuatu). In this article, we propose an alternative caldera model based on deep hydrothermal alteration of volcanic rocks in the central part of the edifice. Under certain conditions, the clay-rich altered and pressurized core may flow under its own weight, spread laterally, and trigger very large caldera-like collapse. Several specific mechanisms can generate the formation of such hydrothermal calderas. Among them, we identify two principal modes: mode 1: ripening with summit loading and flank spreading and mode II: unbuttressing with flank subsidence and flank sliding. Processes such as summit loading or flank subsidence may act simultaneously in hybrid mechanisms. Natural examples are shown to illustrate the different modes of formation. For ripening, we give Aoba (Vanuatu) as an example of probable summit loading, while Casita (Nicaragua) is the type example of flank spreading. For unbuttressing, Nuku Hiva Island (Marquesas) is our example for flank subsidence and Piton de la Fournaise (La Réunion) is our example of flank sliding. The whole process is slow and probably needs (a) at least a few tens of thousands of years to deeply alter the edifice and reach conditions suitable for ductile flow and (b) a few hundred years to achieve the caldera collapse. The size and the shape of the caldera strictly mimic that of the underlying weak core. Thus, the size of the caldera is not controlled by the dimensions of the underlying magma reservoir. A collapsing hydrothermal caldera could generate significant phreatic activity and trigger major eruptions from a coexisting magmatic complex. As the buildup to collapse is slow, such caldera-forming events could be detected long before their onset.

Keywords

Volcano Caldera Hydrothermal alteration Magma Ring fault Collapse 

Notes

Acknowledgments

This research has been funded by the French ANR project VOLCARISK (contract 06-CATT-013-04). John Stix and three anonymous reviewers greatly contributed to improve the first version of the manuscript.

References

  1. Acocella V, Cifelli F, Funiciello R (2000) Analogue models of collapse calderas and resurgent domes. J Volcanol Geotherm Res 104:81–96CrossRefGoogle Scholar
  2. Ando M (1979) The Hawaii earthquake of November 29, 1975: low dip angle faulting due to forceful injection of magma. J Geophys Res 84:7616–7626CrossRefGoogle Scholar
  3. Bachèlery P (1981) Le Piton de la Fournaise (Ile de la Réunion). Etude volcanologique, structurale et pétrologique. Ph.D. thesis, University of Clermont-Ferrand, Clermont-FerrandGoogle Scholar
  4. Bachèlery P (2007) Fournaise: l’éruption du siècle. Eruption 15:19–21Google Scholar
  5. Bachèlery P, Mairine P (1990) Evolution volcano-structurale du Piton de la Fournaise depuis 0.53 Ma. In: Lénat J-F (ed) Le volcanisme de la Réunion—Monographie. Cent Rech Volcanol, Clermont-Ferrand, pp 213–242Google Scholar
  6. Barde-Cabusson (2007) Formation de caldera par fluage d’un système hydrothermal volcanique. Ph.D. thesis, University of Clermont-Ferrand, Clermont-FerrandGoogle Scholar
  7. Barde-Cabusson S, Merle O (2007) From steep-slope volcano to flat caldera floor. Geophys Res Lett 34:L10305. doi: 10.1029/2007GL029784 CrossRefGoogle Scholar
  8. Bindemann I, Valley JW (2000) Formation of low-δ18O rhyolites after caldera collapse at Yellowstone, Wyoming, USA. Geology 28:719–722CrossRefGoogle Scholar
  9. Borgia A (1994) Dynamic basis for volcanic spreading. J Geophys Res 99:17791–17804CrossRefGoogle Scholar
  10. Borgia A, Burr J, Montero W, Morales LD, Alavarado GE (1990) Fault propagation folds induced by gravitational failure and slumping of the Central Costa Rica Volcanic Range: implications for large terrestrial and Martian volcanic edifices. J Geophys Res 95:14357–14382CrossRefGoogle Scholar
  11. Branney MJ, Kokelaar P (1994) Volcanotectonic faulting, soft state deformation, and rheomorphism of tuffs during development of a piecemeal caldera, English Lake District. Geol Soc Am Bull 106:507–530CrossRefGoogle Scholar
  12. Briole P, Bachèlery P, McGuire B, Moss J, Ruegg JC, Sabourault P (1998) Deformation of Piton de la Fournaise: evolution of the monitoring techniques and knowledge acquired in the last five years. In: Casale R et al (eds) Proceedings of the 2nd Workshop on European Laboratory Volcanoes, Santorini, Greece, 1996, European Commission, Brussels, pp 467–474Google Scholar
  13. Calvari S, Spampinato L, Lodato L (2006) The 5 April 2003 vulcanian paroxysmal explosion at Stromboli volcano from field observations and thermal data. J Volcanol Geotherm Res 149:160–175CrossRefGoogle Scholar
  14. Carrasco-Nunez G, Vallance JW, Rose WI (1993) A voluminous avalanche-induced lahar from Citlaltepelt volcano, Mexico: implications for hazard assessment. J Volcanol Geotherm Res 59:35–46CrossRefGoogle Scholar
  15. Cecchi E (2003) Reconstruction 3D pour la volcanologie: apports d’une méthode multi-vues par photogrammétrie numérique. Ph.D. thesis, University of Clermont-Ferrand, Clermont-FerrandGoogle Scholar
  16. Cecchi E, van Wyk de Vries B, Lavest JM (2005) Flank spreading and collapse of weak-cored volcanoes. Bull Volcanol 67:72–91CrossRefGoogle Scholar
  17. Day SJ (1996) Hydrothermal pore fluid pressure and the stability of porous, permeable volcano. In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the earth and other planets. Geol Soc Lond Spec Publ 110:77–93Google Scholar
  18. Delaney PT, Denliger RP, Lisowsky M, Miklius A, Okubo PG, Okamura AT, Sako MK (1998) Volcanic spreading at Kilauea, 1976–1996. J Geophys Res 103:18003–18023CrossRefGoogle Scholar
  19. Dieterich JH (1988) Growth and persistence of Hawaiian volcanic rift zones. J Geophys Res 12:147–160Google Scholar
  20. Donnadieu F, Merle O (1998) Experiments on the indentation process during cryptodome intrusion: new insights into Mt St Helens deformation. Geology 26:79–82CrossRefGoogle Scholar
  21. Donnadieu F, Merle O, Besson JL (2001) Volcanic edifice stability during cryptodome intrusion. Bull Volcanol 63:61–72CrossRefGoogle Scholar
  22. Druitt TH, Sparks RS (1984) On the formation of calderas during ignimbrite eruptions. Nature 310:679–681CrossRefGoogle Scholar
  23. Elsworth D, Day S (1999) Flank collapse triggered by intrusion: the Canarian and Cape Verde Archipelagoes. J Volcanol Geotherm Res 94:323–340CrossRefGoogle Scholar
  24. Finizola A, Sortino F, Lénat J-F, Valenza M (2002) Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self potential and CO2 surveys. J Volcanol Geotherm Res 116:1–18CrossRefGoogle Scholar
  25. Finizola A, Lénat J-F, Macedo O, Ramos D, Thouret J-C, Sortino F (2004) Fluid circulation and structural discontinuities inside Misti volcano (Peru) inferred from self-potential measurements. J Volcanol Geotherm Res 135:343–360CrossRefGoogle Scholar
  26. Finizola A, Revil A, Rizzo E, Piscitelli S, Ricci T, Morin J, Angeletti B, Mocochain L, Sortino F (2006) Hydrogeological insights at Stromboli volcano (Italy) from geoelectrical, temperature, and CO2 soil degassing investigations. Geophys Res Lett 33:L7304. doi: 10.1029/2006GL026842 CrossRefGoogle Scholar
  27. Firth C, Stewart L, McGuire WJ, Kershaw S, Vita-Finzi C (1996) Coastal elevation changes in eastern Silicy: implications for volcano instability at Mount Etna. In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the earth and other planets. Geol Soc Lond Spec Publ 110:153–167Google Scholar
  28. Frank D (1995) Surficial extent and conceptual model of hydrothermal system at Mount Rainier. J Volcanol Geotherm Res 65:51–80CrossRefGoogle Scholar
  29. Galland O, Cobbold PR, Hallot E, de Bremond d’Ars J, Delavaud G (2006) Use of vegetable oil and silica powder for scale modelling of magmatic intrusion in a deforming brittle crust. Earth Planet Sci Lett 243:786–804CrossRefGoogle Scholar
  30. Gillott JE (1987) Clay in engineering geology. Developments in geotechnical engineering. Elsevier Science, AmsterdamGoogle Scholar
  31. Gillot PY, Nativel PE, Condomines M (1990) Géochronologie du Piton de la Fournaise. In: Lénat J-F (ed) Le volcanisme de la Réunion—Monographie. Cent Rech Volcanol, Clermont-Ferrand, pp 243–256Google Scholar
  32. Glicken H, Voight B, Janda RJ (1981) Rockslide–debris avalanche of May 18, 1980, Mount St. Helens volcano. Proceedings of the IAVCEI Symposium on Arc Volcanism, Tokyo and Hakone, pp 109–110Google Scholar
  33. Hall ML, Robin C, Beate B, Mothes P, Monzier M (1999) Tungurahua volcano, Ecuador: structure, eruptive history and hazards. J Volcanol Geotherm Res 91:1–21CrossRefGoogle Scholar
  34. Hildreth W, Halliday AN, Christinsen RL (1991) Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau Volcanic Field. J Petrol 32:63–138Google Scholar
  35. Hochstein MP, Browne PRL (2000) Surface manifestations of geothermal systems with volcanic heat sources. In: Sigurdsson H, Houghton B, McNutt S, Ryner H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Francisco, pp 835–855Google Scholar
  36. Holcomb RT, Moore JG, Lipman PW, Belderson RH (1988) Voluminous submarine lava flows from Hawaiian volcanoes. Geology 16:400–404CrossRefGoogle Scholar
  37. Hürlimann MN, Marti J, Ledesma A (2000) Mechanical relationship between catastrophic volcanic landslides and caldera collapses. Geophys Res Lett 27:2393–2396CrossRefGoogle Scholar
  38. Iverson RM, Reid ME, LaHusen RG (1997) Debris-flow mobilization from landslides. Annu Rev Earth Planet Sci 25:85–138CrossRefGoogle Scholar
  39. Jackson MPA, Vendeville BC, Schultz-Ela D (1994) Structural dynamics of salt systems. Annu Rev Earth Planet Sci 22:93–117CrossRefGoogle Scholar
  40. Kerle N, van Wyk de Vries B (2001) The 1998 debris avalanche at Casita volcano, Nicaragua—investigation of structural deformation as the cause of slope instability using remote sensing. J Volcanol Geotherm Res 105:49–63CrossRefGoogle Scholar
  41. Kerr PF (1955) Hydrothermal alteration and weathering. In: Poldervaart A (ed) The crust of the earth. Geol Soc Am Spec Papers 62:525–543Google Scholar
  42. Komuro H (1987) Experiments on cauldron formation: a polygonal cauldron and ring fractures. J Volcanol Geotherm Res 31:139–149CrossRefGoogle Scholar
  43. Labazuy P (1996) Recurrent landslides events on the submarine flank of Piton de la Fournaise volcano (Réunion Island). In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the earth and other planets. Geol Soc Lond Spec Publ 110:293–305Google Scholar
  44. Lénat JF, Robineau B, Durand S, Bachèlery P (1998) Etude de la zone sommitale du volcan Karthala (Grande Comore) par polarisation spontanée. C R Acad Sci 327:781–788Google Scholar
  45. Lénat J-F, Fitterman D, Jackson DB, Labazuy P (2000) Geoelectrical structure of the central zone of Piton de la Fournaise volcano (Réunion). Bull Volcanol 62:75–89CrossRefGoogle Scholar
  46. Lénat J-F, Malengreau B, Galdéano A (2001) A new model for the evolution of the volcanic island of reunion (Indian Ocean). J Geophys Res 106:8645–8663CrossRefGoogle Scholar
  47. Lipman PW (1984) The roots of ash flow calderas in western North America: windows into the tops of granitic batholiths. J Geophys Res 89:8801–8841CrossRefGoogle Scholar
  48. Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma chamber geometry. Bull Volcanol 59:198–218CrossRefGoogle Scholar
  49. Lipman PW (2000a) Calderas. In: Sigurdsson H, Houghton B, McNutt S, Ryner H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Francisco, pp 643–662Google Scholar
  50. Lipman PW (2000b) The central San Juan caldera cluster: regional volcanic framework. Spec Pap Geol Soc Am 346:9–71Google Scholar
  51. López DL, Williams SN (1993) Catastrophic volcanic collapse: relation to hydrothermal processes. Science 260:1794–1796CrossRefGoogle Scholar
  52. McGuire WJ, Pullen AD, Saunders SJ (1990) Recent dyke-induced large-scale block movement at Mount Etna and potential slope failure. Nature 343:357–359CrossRefGoogle Scholar
  53. Malengreau B, Lénat JF, Froger JL (1999) Structure of Réunion Island (Indian Ocean) inferred from the interpretation of gravity anomalies. J Volcanol Geotherm Res 88:131–146CrossRefGoogle Scholar
  54. Marti J, Ablay GJ, Redshaw LT, Sparks RSJ (1994) Experimental studies of caldera collapse. J Geol Soc Lond 151:919–929CrossRefGoogle Scholar
  55. Marti J, Hurlimann M, Ablay GJ, Gudmundsson A (1997) Vertical and lateral collapse on Tenerife (Canary islands) and other volcanic ocean islands. Geology 25:879–882CrossRefGoogle Scholar
  56. Mathieu L, van Wyk de Vries B, Holohan E, Troll V (2008) Dykes, cups, saucers and sills: analogue experiments on magma intrusion into brittle rocks. Earth Planet Sci Lett 271:1–13CrossRefGoogle Scholar
  57. Maury RC, Guille G, Legendre C, Savanier D, Guillou H, Rossi P, Blais S (2005) Notice explicative, carte géologique de la France (1/50 000), feuille de Nuku Hiva, Polynésie française: Orléans, BRGM, Archipel des marquises: Service Géologique National, Editions du BRGMGoogle Scholar
  58. Merle O, Borgia A (1996) Scaled experiments on volcanic spreading. J Geophys Res 101:13805–13817CrossRefGoogle Scholar
  59. Merle O, Lénat JF (2003) Hybrid collapse mechanism at Piton de la Fournaise volcano, Reunion Island, Indian Ocean. J Geophys Res 108:2166CrossRefGoogle Scholar
  60. Merle O, Vidal N, van Wyk de Vries B (2001) Experiments on vertical basement fault reactivations below volcanoes. J Geophys Res 106:2153–2162CrossRefGoogle Scholar
  61. Merle O, Barde Cabusson S, Maury R, Legendre C, Guille G, Blais S (2006) Volcano core collapse triggered by regional faulting. J Volcanol Geotherm Res 158:269–280CrossRefGoogle Scholar
  62. Michel S, Zlotnicki J (1998) Self-potential and magnetic surveying of La Fournaise Volcano (Reunion Island): correlations with faulting, fluid circulation, and eruption. J Geophys Res 103:17845–17857CrossRefGoogle Scholar
  63. Michon L, Saint-Ange F (2008) The morphology of Piton de la Fournaise basaltic shield volcano (La Reunion Island): characterisation and implication in the volcano evolution. J Geophys Res 113:B03203. doi: 10.29/2005JB004118 CrossRefGoogle Scholar
  64. Middleton GV, Wilcock PR (1996) Mechanics in the earth and environmental sciences. Cambridge University Press, New YorkGoogle Scholar
  65. Mohamed-Abchir MA, Semet MP, Boudon G, Ildefonse P, Bachèlery P, Clochiatti R (1998) Huge hydrothermal explosive activity on Piton de la Fournaise, Reunion Island: the Bellecombe ash member, 2700 BC. In: Casale R et al (eds) Proceedings of the 2nd Workshop on European Laboratory Volcanoes, Santorini, Greece, pp 447–455Google Scholar
  66. Montaldo A, Vicinguerra S, Menza S, Patane G (1996) Recent seismicity of Mount Etna: implications for flank instability. In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the earth and other planets. Geol Soc Lond Spec Publ 110:169–177Google Scholar
  67. Moore JG (1964) Giant submarine landslides on the Hawaiian Ridge. US Geol Surv Prof Pap 501:95–98Google Scholar
  68. Munro DC, Rowland SK (1996) Caldera morphology in the western Galápagos and implications for volcano eruptive behaviour and mechanisms of caldera formation. J Volcanol Geotherm Res 72:85–100CrossRefGoogle Scholar
  69. Nercessian A, Hirn A, Lepine JC, Sapin M (1996) Internal structure of Piton de la Fournaise Volcano from seismic wave propagation and earthquake distribution. J Volcanol Geotherm Res 70:123–143CrossRefGoogle Scholar
  70. Oehler JF, van Wyk de Vries B, Labazuy P (2005) Landslides and spreading of oceanic hot-spot and arc shield volcanoes on low strength layers (LSLs): an analogue modelling approach. J Volcanol Geotherm Res 144:169–189CrossRefGoogle Scholar
  71. Oehler JF, Lénat JF, Labazuy Ph (2007) Growth and collapse of the Reunion Island volcanoes. Bull Volcanol. doi: 10.1007/s00445-007-0163-0 Google Scholar
  72. Oftedahl C (1978) Cauldrons of the Permian Oslo rift. J Volcanol Geotherm Res 3:343–371CrossRefGoogle Scholar
  73. Reid ME, Sisson TW, Brien DL (2001) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology 29:779–782CrossRefGoogle Scholar
  74. Roche O, Druitt TH, Merle O (2000) Experimental study of caldera formation. J Geophys Res 105:395–416CrossRefGoogle Scholar
  75. Rousset D, Lesquer A, Bonneville A, Lénat JF (1989) Complete gravity study of Piton de la Fournaise volcano, Reunion. J Volcanol Geotherm Res 36:37–52CrossRefGoogle Scholar
  76. Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits and associated eruptions. J Volcanol Geotherm Res 22:163–197CrossRefGoogle Scholar
  77. Smith RL, Bailey RA (1968) Resurgent cauldrons. Mem Geol Soc Amer 116:613–662Google Scholar
  78. Tibaldi A (1995) Morphology of pyroclastic cones and tectonics. J Geophys Res 100:24521–24535CrossRefGoogle Scholar
  79. Tibaldi A (2001) Multiple sector collapses at Stromboli volcano, Italy: how they work. Bull Volcanol 63:112–125CrossRefGoogle Scholar
  80. Tort A, Finizola A (2005) The buried caldera of Misti volcano, Peru, revealed by combining a self-potential survey with elliptic Fourier function analysis of topography. J Volcanol Geotherm Res 141:283–297CrossRefGoogle Scholar
  81. Troll VR, Walter TR, Schmincke HU (2002) Cyclic caldera collapse: piston or piecemeal subsidence? Field and experimental evidence. Geology 30:135–138CrossRefGoogle Scholar
  82. Van Wyk de Vries B, Francis P (1997) Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading. Nature 387:387–390CrossRefGoogle Scholar
  83. van Wyk de Vries B, Kerle N, Petley D (2000) Sector collapse forming at Casita volcano, Nicaragua. Geology 28:167–170CrossRefGoogle Scholar
  84. Ventura G, Vilardo G, Bruno PP (1999) The role of flank failure in modifying the shallow plumbing system of volcanoes: an example from Somma-Vesuvius, Italy. Geophys Res Lett 26:3681–3684CrossRefGoogle Scholar
  85. Voight B, Elsworth D (1997) Failure of volcano slope. Géotechnique 47:1–31CrossRefGoogle Scholar
  86. Voight B, Glicken H, Janda J, Douglas PM (1981) Catastrophic rockslide avalanche of May 18. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St Helens, Washington. US Geol Surv Prof Pap 125:347–377Google Scholar
  87. Walker GPL (1960a) The amygdale minerals in the Tertiary lavas of Ireland. III. Regional distribution. Mineral Mag 32:503–527CrossRefGoogle Scholar
  88. Walker GPL (1960b) Zeolite zones and dyke distribution in relation to the structure of the basalts of eastern Ireland. J Geol 68:515–528CrossRefGoogle Scholar
  89. Walker GPL (1984) Downsag calderas, ring faults, caldera sizes, and incremental caldera growth. J Geophys Res 89(B10):8407–8416CrossRefGoogle Scholar
  90. Walker GPL (1988) Three Hawaiian calderas: an origin through loading by shallow intrusions. J Geophys Res 93:14773–14784CrossRefGoogle Scholar
  91. Warden AJ (1970) Evolution of Aoba caldera volcano, New Hebrides. Bull Volcanol 34:107–140CrossRefGoogle Scholar
  92. Yokoyama IA (1981) Geophysical interpretation of the 1883 Krakatau eruption. J Volcanol Geotherm Res 9:359–378CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Olivier Merle
    • 1
    Email author
  • Stéphanie Barde-Cabusson
    • 1
    • 2
  • Benjamin van Wyk de Vries
    • 1
  1. 1.Laboratoire Magmas et VolcansCNRS-IRD-Université Blaise PascalClermont-FerrandFrance
  2. 2.Dipartimento di Scienze della TerraUniversità di FirenzeFlorenceItaly

Personalised recommendations