Bulletin of Volcanology

, 72:63 | Cite as

Controls on magma permeability in the volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc)

  • W. Degruyter
  • O. Bachmann
  • A. Burgisser
Research Article


X-ray computed microtomography (µCT) was applied to pumices from the largest Quaternary explosive eruption of the active South Aegean Arc (the Kos Plateau Tuff; KPT) in order to better understand magma permeability within volcanic conduits. Two different types of pumices (one with highly elongated bubbles, tube pumice; and the other with near spherical bubbles, frothy pumice) produced synchronously and with identical chemical composition were selected for µCT imaging to obtain porosity, tortuosity, bubble size and throat size distributions. Tortuosity drops on average from 2.2 in frothy pumice to 1.5 in tube pumice. Bubble size and throat size distributions provide estimates for mean bubble size (~93–98 μm) and mean throat size (~23–29 μm). Using a modified Kozeny-Carman equation, variations in porosity, tortuosity, and throat size observed in KPT pumices explain the spread found in laboratory measurements of the Darcian permeability. Measured difference in inertial permeability between tube and frothy pumices can also be partly explained by the same variables but require an additional parameter related to the internal roughness of the porous medium (friction factor f 0 ). Constitutive equations for both types of permeability allow the quantification of laminar and turbulent gas escape during ascent of rhyolitic magma in volcanic conduits.


Microtomography Pumice Permeability Tortuosity Outgassing Volcanic conduit 



This project was supported by the Swiss NSF grant #200021-111709/1 to WD and OB. WD greatly acknowledges the UGCT team at the University of Ghent (B. Masschaele, V. Cnudde, J. Vlassenbroeck, M. Dierick and L. Van Hoorebeke) and kindly thanks B. Lindquist, R. Ketcham and A. Proussevitch for the use of their respective softwares and quick response to questions. We are grateful for constructive comments from two anonymous reviewers.


  1. Allen SR, Cas RAF (1998) Rhyolitic fallout and pyroclastic density current deposits from a phreatoplinian eruption in the eastern Aegean Sea, Greece. J Volcanol Geotherm Res 86:219–251CrossRefGoogle Scholar
  2. Allen SR, Stadlbauer E, Keller J (1999) Stratigraphy of the Kos Plateau Tuff: product of a major quaternary explosive rhyolitic eruption in the eastern Aegean, Greece. Int J Earth Sci 88(1):132–156CrossRefGoogle Scholar
  3. Allen SR (2001) Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea. J Volcanol Geotherm Res 105(1–2):141–162CrossRefGoogle Scholar
  4. Allen SR, Cas RAF (2001) Transport of pyroclastic flows across the sea during the explosive, rhyolitic eruption of the Kos Plateau Tuff, Greece. Bull Volcanol 62(6–7):441–456. doi: 10.1007/s004450000107 CrossRefGoogle Scholar
  5. Allen SR, McPhie J (2001) Syn-eruptive chaotic breccia on Kos, Greece, associated with an energetic pyroclastic flow. Bull Volcanol 63(6):421–432. doi: 10.1007/s004450100162 CrossRefGoogle Scholar
  6. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Mineral Meteorol 146:54–62Google Scholar
  7. Bai L, Baker DR, Rivers M (2008) Experimental study of bubble growth in Stromboli basalt melts at 1 atm. Earth Planet Sci Lett 267(3–4):533–547. doi: 10.1016/j.epsl.2007.11.063 CrossRefGoogle Scholar
  8. Bear J (1972) Dynamics of fluids in porous media. Dover, New YorkGoogle Scholar
  9. Bernard ML, Zamora M, Geraud Y, Boudon G (2007) Transport properties of pyroclastic rocks from Montagne Pelee volcano (Martinique, Lesser Antilles). J Geophys Res 112:B05205. doi: 10.1029/2006JB004385 CrossRefGoogle Scholar
  10. Blower JD (2001) Factors controlling permeability-porosity relationships in magma. Bull Volcanol 63(7):497–504. doi: 10.1007/s004450100172 CrossRefGoogle Scholar
  11. Bouvet de Maisonneuve C, Bachmann O, Burgisser A (2008) Characterization of juvenile pyroclasts from the Kos Plateau Tuff (Aegean Arc): insights into the eruptive dynamics of a rhyolitic caldera-forming eruption. Bull Volcanol . doi: 10.1007/s00445-008-0250-x Google Scholar
  12. Burgisser A, Gardner JE (2005) Experimental constraints on degassing and permeability in volcanic conduit flow. Bull Volcanol 67(1):42–56. doi: 10.1007/s00445-004-0359-5 CrossRefGoogle Scholar
  13. Carman PC (1937) Fluid flow through a granular bed. Trans Inst Chem Eng London 15:150–156Google Scholar
  14. Celzard A, Mareche JF (2002) Fluid flow in highly porous anisotropic graphites. J Phys Condens Matter 14(6):1119–1129CrossRefGoogle Scholar
  15. Costa A (2006) Permeability-porosity relationship: a reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys Res Lett 33(2):L02318. doi: 10.1029/2005GL025134 CrossRefGoogle Scholar
  16. Dingwell DB (1996) Volcanic dilemma: flow or blow? Science 273(5278):1054–1055CrossRefGoogle Scholar
  17. Dufek J, Bergantz GW (2005) Transient two-dimensional dynamics in the upper conduit of a rhyolitic eruption: a comparison of closure models for the granular stress. J Volcanol Geotherm Res 143(1–3):113–132. doi: 10.1016/j.jvolgeores.2004.09.013 CrossRefGoogle Scholar
  18. Eichelberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323:598–602CrossRefGoogle Scholar
  19. Gonnermann HM, Manga M (2003) Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature 426(6965):432–435CrossRefGoogle Scholar
  20. Gonnermann HM, Manga M (2007) The fluid mechanics inside a volcano. Annu Rev Fluid Mech 39:321–356. doi: 10.1146/annurev.fluid.39.050905.110207 CrossRefGoogle Scholar
  21. Gualda GAR (2006) Crystal size distributions derived from 3D datasets: sample size versus uncertainties. J Petrol 47(6):1245–1254. doi: 10.1093/petrology/egl010 CrossRefGoogle Scholar
  22. Gualda GAR, Rivers M (2006) Quantitative 3D petrography using X-ray tomography: application to Bishop Tuff pumice clasts. J Volcanol Geotherm Res 154(1–2):48–62. doi: 10.1016/j.jvolgeores.2005.09.019 CrossRefGoogle Scholar
  23. Gualda GAR, Anderson AT (2007) Magnetite scavenging and the buoyancy of bubbles in magmas. Part 1: discovery of a pre-eruptive bubble in Bishop rhyolite. Contrib Mineral Petrol 153(6):733–742. doi: 10.1007/s00410-006-0173-5 CrossRefGoogle Scholar
  24. Ketcham RA, Carlson WD (2001) Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput Geosci 27(4):381–400CrossRefGoogle Scholar
  25. Ketcham RA (2005a) Three-dimensional grain fabric measurements using high-resolution X-ray computed tomography. J Struct Geol 27(7):1217–1228. doi: 10.1016/j.jsg.2005.02.006 CrossRefGoogle Scholar
  26. Ketcham RA (2005b) Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1(32–41). doi: 10.1130/GES00001.1
  27. Klug C, Cashman KV (1996) Permeability development in vesiculating magmas: implications for fragmentation. Bull Volcanol 58(2–3):87–100CrossRefGoogle Scholar
  28. Le Pennec JL, Hermitte D, Dana I, Pezard P, Coulon C, Cocheme JJ, Mulyadi E, Ollagnier F, Revest C (2001) Electrical conductivity and pore-space topology of Merapi lavas: implications for the degassing of porphyritic andesite magmas. Geophys Res Lett 28(22):4283–4286CrossRefGoogle Scholar
  29. Lindquist WB, Venkatarangan A (1999) Investigating 3D geometry of porous media from high resolution images. Phys Chem Earth Part A 24(7):593–599CrossRefGoogle Scholar
  30. Lindquist WB, Venkatarangan A, Dunsmuir J, Wong TF (2000) Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J Geophys Res 105(B9):21509–21527CrossRefGoogle Scholar
  31. Llewellin EW, Manga A (2005) Bubble suspension rheology and implications for conduit flow. J Volcanol Geotherm Res 143(1–3):205–217. doi: 10.1016/j.jvolgeores.2004.09.018 CrossRefGoogle Scholar
  32. Marti J, Soriano C, Dingwell DB (1999) Tube pumices as strain markers of the ductile-brittle transition during magma fragmentation. Nature 402(6762):650–653CrossRefGoogle Scholar
  33. Mastin LG, Ghiorso MS (2000) A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits. U.S. Geological Survey Open-File Rep 00-209Google Scholar
  34. Mastin LG (2005) The controlling effect of viscous dissipation on magma flow in silicic conduits. J Volcanol Geotherm Res 143(1–3):17–28CrossRefGoogle Scholar
  35. Melnik O, Barmin AA, Sparks RSJ (2005) Dynamics of magma flow inside volcanic conduits with bubble overpressure buildup and gas loss through permeable magma. J Volcanol Geotherm Res 143(1–3):53–68. doi: 10.1016/j.jvolgeores.2004.09.010 CrossRefGoogle Scholar
  36. Mortensen NA, Okkels F, Bruus H (2005) Reexamination of Hagen-Poiseuille flow: Shape dependence of the hydraulic resistance in microchannels. Physical Review E 71(5). doi: 10.1103/PhysRevE.71.057301
  37. Mueller S, Melnik O, Spieler O, Scheu B, Dingwell DB (2005) Permeability and degassing of dome lavas undergoing rapid decompression: An experimental determination. Bull Volcanol 67(6):526–538. doi: 10.1007/s00445-004-0392-4 CrossRefGoogle Scholar
  38. Mueller S, Scheu B, Spieler O, Dingwell DB (2008) Permeability control on magma fragmentation. Geology 36(5):399–402. doi: 10.1130/G24605A.1 CrossRefGoogle Scholar
  39. Namiki A, Manga M (2008) Transition between fragmentation and permeable outgassing of low viscosity magmas. J Volcanol Geotherm Res 169(1–2):48–60. doi: 10.1016/j.jvolgeores.2007.07.020 CrossRefGoogle Scholar
  40. Oh W, Lindquist WB (1999) Image thresholding by indicator kriging. Ieee Transactions on Pattern Analysis and Machine Intelligence 21(7):590–602CrossRefGoogle Scholar
  41. Okumura S, Nakamura M, Tsuchiyama A (2006) Shear-induced bubble coalescence in rhyolitic melts with low vesicularity. Geophys Res Lett 33(20):L20316. doi: 10.1029/2006GL027347 CrossRefGoogle Scholar
  42. Okumura S, Nakamura M, Tsuchiyama A, Nakano T, Uesugi K (2008) Evolution of bubble microstructure in sheared rhyolite: Formation of a channel-like bubble network. J Geophys Res 113:B07208. doi: 10.1029/2007JB005362 CrossRefGoogle Scholar
  43. Okumura S, Nakamura M, Takeuchi S, Tsuchiyama A, Nakano T, Uesugi K (2009) Magma deformation may induce non-explosive volcanism via degassing through bubble networks. Earth Planet Sci Lett. . doi: 10.1016/j.epsl.2009.02.036 Google Scholar
  44. Papale P (1999) Strain-induced magma fragmentation in explosive eruptions. Nature 397:425–428CrossRefGoogle Scholar
  45. Polacci M, Papale P, Rosi M (2001) Textural heterogeneities in pumices from the climactic eruption of Mount Pinatubo, 15 June 1991, and implications for magma ascent dynamics. Bull Volcanol 63(2–3):83–97. doi: 10.1007/s004450000123 CrossRefGoogle Scholar
  46. Polacci M, Pioli L, Rosi M (2003) The Plinian phase of the Campanian Ignimbrite eruption (Phlegrean Fields, Italy): evidence from density measurements and textural characterization of pumice. Bull Volcanol 65(6):418–432. doi: 10.1007/s00445-002-0268-4 CrossRefGoogle Scholar
  47. Polacci M (2005) Constraining the dynamics of volcanic eruptions by characterization of pumice textures. Ann Geophys 48(4–5):731–738Google Scholar
  48. Polacci M, Baker DR, Mancini L, Tromba G, Zanini F (2006) Three-dimensional investigation of volcanic textures by X-ray microtomography and implications for conduit processes. Geophys Res Lett 33(13):L13312. doi: 10.1029/2006GL026241 CrossRefGoogle Scholar
  49. Polacci M, Baker DR, Bai LP, Mancini L (2008) Large vesicles record pathways of degassing at basaltic volcanoes. Bull Volcanol 70(9):1023–1029. doi: 10.1007/s00445-007-0184-8 CrossRefGoogle Scholar
  50. Polacci M, Baker DR, Mancini L, Favretto S, Hill RJ (2009) Vesiculation in magmas from Stromboli and implications for normal Strombolian activity and paroxysmal explosions in basaltic systems. J Geophys Res 114:B01206. doi: 10.1029/2008JB005672 CrossRefGoogle Scholar
  51. Prodanovic M, Lindquist WB, Seright RS (2006) Porous structure and fluid partitioning in polyethylene cores from 3D X-ray microtomographic imaging. J Colloid Interface Sci 298(1):282–297. doi: 10.1016/j.jcis.2005.11.053 CrossRefGoogle Scholar
  52. Proussevitch AA, Sahagian DL (1998) Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling. J Geophys Res 103(B8):18223–18251CrossRefGoogle Scholar
  53. Proussevitch AA, Sahagian DL (2001) Recognition and separation of discrete objects within complex 3D voxelized structures. Comput Geosci 27(4):441–454CrossRefGoogle Scholar
  54. Proussevitch AA, Sahagian DL, Tsentalovich EP (2007a) Statistical analysis of bubble and crystal size distributions: Formulations and procedures. J Volcanol Geotherm Res 164(3):95–111. doi: 10.1016/j.jvolgeores.2007.04.006 CrossRefGoogle Scholar
  55. Proussevitch AA, Sahagian DL, Carlson WD (2007b) Statistical analysis of bubble and crystal size distributions: application to colorado plateau basalts. J Volcanol Geotherm Res 164(3):112–126. doi: 10.1016/j.jvolgeores.2007.04.007 CrossRefGoogle Scholar
  56. Ramos JI (1999) Two-dimensional simulations of magma ascent in volcanic conduits. Int J Numer Meth Fluids 29:765–789CrossRefGoogle Scholar
  57. Rosi M, Landi P, Polacci M, Di Muro A, Zandomeneghi D (2004) Role of conduit shear on ascent of the crystal-rich magma feeding the 800-year-BP Plinian eruption of Quilotoa Volcano (Ecuador). Bull Volcanol 66(4):307–321. doi: 10.1007/s00445-003-0312-z CrossRefGoogle Scholar
  58. Rust AC, Manga M, Cashman KV (2003) Determining flow type, shear rate and shear stress in magmas from bubble shapes and orientations. J Volcanol Geotherm Res 122(1–2):111–132CrossRefGoogle Scholar
  59. Rust AC, Cashman KV (2004) Permeability of vesicular silicic magma: inertial and hysteresis effects. Earth Planet Sci Lett 228(1–2):93–107. doi: 10.1016/j.epsl.2004.09.025 CrossRefGoogle Scholar
  60. Ruth D, Ma H (1990) On the derivation of the Forchheimer equation by means of the averaging theorem. Transp Porous Med 7(3):255–264CrossRefGoogle Scholar
  61. Saar MO, Manga M (1999) Permeability-porosity relationship in vesicular basalts. Geophys Res Lett 26(1):111–114CrossRefGoogle Scholar
  62. Scholes ON, Clayton SA, Hoadley AFA, Tiu C (2007) Permeability anisotropy due to consolidation of compressible porous media. Transp Porous Med 68(3):365–387. doi: 10.1007/s11242-006-9048-5 CrossRefGoogle Scholar
  63. Shin H, Lindquist WB, Sahagian DL, Song S-R (2005) Analysis of the vesicular structure of basalts. Comput Geosci 31(4):473–487. doi: 10.1016/j.cageo.2004.10.013 CrossRefGoogle Scholar
  64. Song SR, Jones KW, Lindquist WB, Dowd BA, Sahagian DL (2001) Synchrotron X-ray computed microtomography: studies on vesiculated basaltic rocks. Bull Volcanol 63(4):252–263. doi: 10.1007/s004450100141 CrossRefGoogle Scholar
  65. Stasiuk MV, Barclay J, Caroll MR, Jaupart C, Ratté JC, Sparks RSJ, Tait SR (1996) Degassing during magma ascent in the Mule Creek vent (USA). Bull Volcanol 58:117–130CrossRefGoogle Scholar
  66. Thomas N, Jaupart C, Vergniolle S (1994) J Geophys Res 99(B8):15633–15644CrossRefGoogle Scholar
  67. Wright HMN, Roberts JJ, Cashman KV (2006) Permeability of anisotropic tube pumice: model calculations and measurements. Geophys Res Lett 33:L17316. doi: 10.1029/2006GL027224 CrossRefGoogle Scholar
  68. Yoshida S, Koyaguchi T (1999) A new regime of volcanic eruption due to the relative motion between liquid and gas. J Volcanol Geotherm Res 89(1–4):303–315CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Section des Sciences de la Terre et de l’EnvironnementUniversité de GenèveGenèveSwitzerland
  2. 2.Department of Earth and Space SciencesUniversity of WashingtonSeattleUSA
  3. 3.Institut des Sciences de la Terre d’OrléansCNRS – Université d’OrléansOrléans Cedex 2France

Personalised recommendations