Bulletin of Volcanology

, 71:1041 | Cite as

Distinguishing volcanic debris avalanche deposits from their reworked products: the Perrier sequence (French Massif Central)

  • Benjamin Bernard
  • Benjamin van Wyk de Vries
  • Hervé Leyrit
Research Article


Debris avalanches associated with volcanic sector collapse are usually high-volume high-mobility phenomena. Debris avalanche deposit remobilisation by cohesive debris flows and landslides is common, so they can share textural characteristics such as hummocks and jigsaw cracks. Distinguishing original deposits from reworked products is critical for geological understanding and hazard assessment because of their different origin, frequency and environmental impact. We present a methodology based on field evidence to differentiate such epiclastic breccias. Basal contact mapping constrained by accurate altitude and location data allows the reconstruction of deposit stratigraphy and geometry. Lithological analysis helps to distinguish the different units. Incorporation structures, kinematic indicators and component mingling textures are used to characterise erosion and transport mechanisms. We apply this method to the enigmatic sequence at Perrier (French Massif Central), where four units (U1–U4) have been interpreted either as debris flow or debris avalanche deposits. The sequence results from activity on the Monts Dore Volcano about 2 Ma ago. The epiclastic units are matrix supported with an almost flat top. U2 and U3 have clear debris flow deposit affinities such as rounded clasts and intact blocks (no jigsaw cracks). U1 and U4 have jigsaw cracked blocks with matrix injection and stretched sediment blocks. U1 lacks large blocks (>10 m wide) and has a homogenous matrix with an upward increase of trapped air vesicle content and size. This unit is interpreted as a cohesive debris flow deposit spawned from a debris avalanche upstream. In contrast, U4 has large mega-blocks (up to 40 m wide), sharp contacts between mixed facies zones with different colours and numerous jigsaw fit blocks (open jigsaw cracks filled by monogenic intra-clast matrix). Mega-blocks are concentrated near the deposit base and are spatially associated with major substratum erosion. This deposit has a debris avalanche distal facies with local debris flow affinities due to partial water saturation. We also identify two landslide deposits (L1 and L2) resulting from recent reworking that has produced a similar facies to U1 and U4. These are distinguishable from the original deposits, as they contain blocks of mixed U1/U4 facies, a distinctly less consolidated and more porous matrix and a fresh hummocky topography. This work shows how to differentiate epiclastic deposits with similar characteristics, but different origins. In doing so, we improve understanding of present and past instability of the Monts Dore and identify present landslide hazards at Perrier.


Perrier Monts Dore Debris avalanche Debris flow Landslide Deposit texture 



We would like to thank the locals of Perrier for their hospitality and their hard work that has uncovered many outcrops during their restoration work on the troglodyte dwellings. We also want to thanks Daniel Andrade, Silvana Hidalgo and Olimpiu Pop for their help and suggestions in the field. Thoughtful reviews by Lucia Capra and Stuart Dunning improved this paper.


  1. Baudron JC, Cantagrel J-M (1980) Les deux volcans des Monts Dore (Massif Central Français): arguments chronologiques. C R Acad Sciences Paris 290(D):1409–1412Google Scholar
  2. Belousov A, Belousova M, Voight B (1999) Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 61:324–342CrossRefGoogle Scholar
  3. Bernard B, Van Wyk de Vries B, Barba D, Leyrit H, Robin C, Alcaraz S, Samaniego P (2008) The Chimborazo sector collapse and debris avalanche: deposit characteristics as evidence of emplacement mechanisms. J Volcanol Geotherm Res 176(1):36–43 Special issue on Ecuadorian volcanismCrossRefGoogle Scholar
  4. Calvari S, Tanner LH, Groppelli G (1998) Debris-avalanche deposits of the Milo Lahar sequence and the opening of the Valle del Bove on Etna volcano (Italy). J Volcanol Geotherm Res 87:193–209CrossRefGoogle Scholar
  5. Cantagrel J-M, Baudron JC (1983) Chronologie des eruptions dans le massif volcanique des Monts Dore (méthode potassium–argon): implication volcanologiques. Géol Fr I(1–2):123–142Google Scholar
  6. Cantagrel J-M, Briot D (1990) Avalanches et coulées de débris: le volcan du Guéry; où est la caldéra d'effondrement dans le Massif des Monts Dore? C R Acad Sci Paris 311(II):219–225Google Scholar
  7. Capra L, Macías JL (2000) Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico. J Volcanol Geotherm Res 102(1–2):149–167CrossRefGoogle Scholar
  8. Capra L, Macías JL (2002) The cohesive Naranjo debris-flow deposit (10 km3): a dam breakout flow derived from the Pleistocene debris-avalanche deposit of Nevado de Colima Volcano (México). J Volcanol Geotherm Res 117:213–235CrossRefGoogle Scholar
  9. Capra L, Macias JL, Scott KM, Abrams M, Garduño-Monroy VM (2002) Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico—behavior, and implications for hazard assessment. J Volcanol Geotherm Res 113:81–110CrossRefGoogle Scholar
  10. Chayes F (1956) Petrographic modal analysis—an elementary statistical appraisal. Wiley, London, p 113Google Scholar
  11. Costa JE, Shuster RL (1988) The formation and failure of natural dams. Geol Soc Am Bull 100:1054–1068CrossRefGoogle Scholar
  12. Duffell H (1999) Contribution géochronologique à la stratigraphie volcanique de Massif des Monts Dore par la méthode 40Ar/39AR. DEA thesis. University Blaise Pascal, Clermont-Ferrand, p 56Google Scholar
  13. Glicken H (1991) Sedimentary architecture of large volcanic-debris avalanches. In: Fisher RV, Smith GA (eds) Sedimentation in Volcanic Settings, SEPM Spec Pub 45. SEPM, Tulsa, OK, pp 99–106Google Scholar
  14. Glicken H (1996) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens volcano, Washington. Open-file Report 96-677, Cascades Volcano Observatory, Vancouver, p 90Google Scholar
  15. Kerle N, van Wyk de Vries B (2001) The 1998 debris avalanche at Casita volcano, Nicaragua—investigation of structural deformation as the cause of slope instability using remote sensing. J Volcanol Geotherm Res 105(1–2):49–63CrossRefGoogle Scholar
  16. Lo Bello P (1988) Géochronologie par la méthode 39Ar-40Ar de ponces quaternaires contaminées. Exemple des ponces du Mont-Dore (Massif Central français). Utilisation d'un laser continu pour la datation de minéraux individuels. Thèse 3° cycle, Université Blaise Pascal, Clermont-Ferrand, p 122Google Scholar
  17. Ly MH (1982) Le plateau de Perrier et la Limagne du Sud : Etudes volcanologiques et chronologiques des produits montdoriens. Thèse 3° cycle, Université Blaise Pascal, Clermont-Ferrand, p 180Google Scholar
  18. McGuire WJ (1996) Volcano instability: a review of contemporary themes. In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the Earth and others planets. Geol Soc London Spec Pub 110. Geological Society of London, London, pp 1–23Google Scholar
  19. Ménard JJ (1979) Contribution à l'étude pétrogénétique des nappes de ponces du massif volcanique du Mont-Dore. Thèse 3° cycle, Université d'Orsay, Paris, p 105Google Scholar
  20. Mossand P (1983) Le volcanisme anté et syn-caldera des Monts-Dore (Massif Central français), implications géothermiques. Thèse 3° cycle, Université Blaise Pascal, Clermont-Ferrand, p 197Google Scholar
  21. Nehlig P, Boivin P, De Goër de Hervé A, Mergoil J, Prouteau G, Sustrac G, Thiéblemont D (2003) Les volcans du Massif central. Géologues Massif Central: 1–41Google Scholar
  22. Palmer BA, Alloway BV, Neall VE (1991) Volcanic-debris-avalanche deposits in New Zealand—lithofacies organization in unconfined, wet-avalanche flows. In: Fisher RV, Smith GA (eds) Sedimentation in Volcanic settings, SEPM Spec Pub 45. SEPM, Tulsa, OK, pp 89–98Google Scholar
  23. Pastre J-F (2004) The Perrier Plateau: a Plio-Pleistocene long fluvial record in the river Allier Basin, Massif Central, France. Quaternaire 15:87–101Google Scholar
  24. Pastre J-F, Cantagrel J-M (2001) Téphrostratigraphie du Mont Dore (Massif Central, France). Quaternaire 12(4):249–267Google Scholar
  25. Rodolfo KS (1989) Origin and early evolution of lahar channel at Mabinit, Mayon volcano, Philippines. Geol Soc Am Bull 101:414–426CrossRefGoogle Scholar
  26. Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits and associated eruptions. J Volcanol Geotherm Res 22:163–197CrossRefGoogle Scholar
  27. Siebert L (2002) Landslides resulting from structural failure of volcanoes. Geol Soc Am Rev Eng Geol XV:209–235Google Scholar
  28. Siebert L, Glicken H, Ui T (1987) Volcanic hazards from Bezymianny- and Bandai-type eruptions. Bull Volcanol 49:435–459CrossRefGoogle Scholar
  29. Smith GA, Lowe DR (1991) Lahars: volcano-hydrologic events and deposition in the debris flow-hyperconcentrated flow continuum. In: Fisher RV, Smith GA (eds) Sedimentation in Volcanic Settings, SEPM Spec Pub 45. SEPM, Tulsa, OK, pp 59–70Google Scholar
  30. Ui T (1983) Volcanic dry avalanche deposits—identification and comparison with nonvolcanic debris stream deposits. J Volcanol Geotherm Res 18:135–150CrossRefGoogle Scholar
  31. Ui T (1989) Discrimination between debris avalanche and other volcanoclastic deposits. In: Latter JH (ed) Volcanic hazards. IAVCEI Proc. Volcano. Springer, Berlin, pp 201–209Google Scholar
  32. Ui T, Glicken H (1986) Internal structural variations in a debris-avalanche deposit from ancestral Mount Shasta, California, USA. Bull Volcanol 48(4):189–194CrossRefGoogle Scholar
  33. Ui T, Takarada S, Yoshimoto M (2000) Debris avalanches. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, London, pp 617–626Google Scholar
  34. Vallance JW (2000) Lahars. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, London, pp 601–616Google Scholar
  35. van Wyk de Vries B, Self S, Francis PW, Keszthelyi L (2001) A gravitational spreading origin for the Socompa debris avalanche. J Volcanol Geotherm Res 105:225–247CrossRefGoogle Scholar
  36. Vidal N, Goër De, de Hervé A, Camus G (1996) Déstabilisation de reliefs d'érosion en terrain volcanique: exemples pris dans le Massif Central Français. Quaternaire 7:117–127CrossRefGoogle Scholar
  37. Vincent PM (1980) Volcanisme et chambre magmatique : l'exemple des Monts-Dore. Livre du centenaire. Mém Soc Géol Fr 10:71–85Google Scholar
  38. Voight BH, Glicken H, Janda RJ, Douglass PM (1981) Catastrophic rockslide avalanche of May 18. In: Lipman PW, Mulineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. U.S. Geological Survey, Washington, DC, pp 347–377Google Scholar
  39. Yarnold JC (1993) Rock-avalanche characteristics in dry climates and the effect of flow into lakes: Insights from mid-Tertiary sedimentary breccias near Artillery Peak, Arizona. Geol Soc Am Bull 105:345–360CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Benjamin Bernard
    • 1
  • Benjamin van Wyk de Vries
    • 1
  • Hervé Leyrit
    • 2
  1. 1.Laboratoire Magmas et VolcansCNRS UMR 6524Clermont-FerrandFrance
  2. 2.Direction de l’EnseignementInstitut Polytechnique Lasalle BeauvaisBeauvaisFrance

Personalised recommendations