Bulletin of Volcanology

, Volume 71, Issue 9, pp 977–1005 | Cite as

Isotope geochemistry (Sr–Nd–Pb) and petrogenesis of leucite-bearing volcanic rocks from “Colli Albani” volcano, Roman Magmatic Province, Central Italy: inferences on volcano evolution and magma genesis

  • Elena Boari
  • Riccardo Avanzinelli
  • Leone Melluso
  • Guido Giordano
  • Massimo Mattei
  • Arnaldo A. De Benedetti
  • Vincenzo Morra
  • Sandro Conticelli
Research Article


The “Colli Albani” composite volcano is made up of strongly silica-undersaturated leucite-bearing rocks. Magmas were erupted during three main periods, but a complex plumbing system dominated by regional tectonics channelled magmas into different reservoirs. The most alkali-rich magmas, restricted to the caldera-forming period (pre-caldera), are extremely enriched in incompatible trace elements and display more radiogenic Sr (87Sr/86Sr = 0.71057–0.71067), with slightly less radiogenic Pb with respect to those of the post-caldera period. Post-caldera volcanic activity was concentrated in three different volcanic environments: external to the caldera, along the caldera edge and within the caldera. The post-caldera magmas produced melilite- to leucitite-bearing, plagioclase-free leucitites. In contrast to the pre-caldera lavas, they are characterised by lower incompatible trace element abundances and less radiogenic Sr (87Sr/86Sr = 0.71006–0.71039). Magmas evolved through crystal fractionation plus minor crustal assimilation in a large magma chamber during the pre-caldera period. The multiple caldera collapses dissected and partially obliterated the early magma chamber. During the post-caldera stage, magmas were channelled through several pathways and multiple shallow-level magma reservoirs were established. A lithospheric mantle wedge previously depleted in the basaltic component and subsequently enriched by metasomatic slab-derived component is suggested as the mantle source of Colli Albani parental magmas. Two different parental magmas are recognised for the pre- and post-caldera stages. The differences may be related to the interplay between smaller degrees of melting for the pre-caldera magmas and more carbonate-rich recycled subducted lithologies in the post-caldera magmas.


Sr–Nd–Pb isotopes in volcanic rocks Ultrapotassic rocks Leucitites Leucite-bearing melilites Colli Albani volcano Roman Magmatic Province Central Italy 



We sincerely thank Filippo Olmi, to whose memory this paper is dedicated, for allowing access to EPMA facilities and for his skilful assistance during microprobe analyses. We also thank Antonio Canzanella (Naples) and Elena Pecchioni (Florence) for the assistance during XRF analyses, Enzo Monetti for performing wet chemical analyses and Simone Tommasini and Chiara M. Petrone for helping with isotopic analyses. Stirring and focussing discussions with Renato Funiciello, Angelo Peccerillo, Giuseppe Diano and Simone Tommasini are greatly appreciated. Thoughtful peer-reviews by Cliff Shaw and Martin Menzies greatly improved the manuscript and are highly appreciated. Final critical reading of Grant Heiken is warmly thanked. Editorial handling by John Stix and Raffaello Cioni is also appreciated. Financial support was provided by the Università degli Studi di Firenze, by MIUR through FIRB_2001 (grant no. RBAU01FX8M_003) and PRIN_2008 (grant nos. 2008HMHYFP_002; 2008HMHYFP_003; 2008HMHYFP_004).

Supplementary material

445_2009_278_MOESM1_ESM.xls (84 kb)
ESM 1 (XLS 83 kb)


  1. Amato A, Valensise G (1986) Il basamento sedimentario dell’area albana: risultati di uno studio degli ejecta dei crateri idromagmatici di Albano e Nemi. Mem Soc Geol Ital 35:761–767Google Scholar
  2. Amato A, Chiarabba C, Cocco M, di Bona M, Selvaggi G (1994) The 1989–1990 seismic swarm in the Alban Hills volcanic area, Central Italy. J Volcanol Geotherm Res 61:225–237CrossRefGoogle Scholar
  3. Anzidei M, Carapezza ML, Esposito A, Giordano G, Tarchini L, Lelli M (2008) The Albano Maar Lake High resolution bathymetry and dissolved CO2 budget (Colli Albani District, Italy): constrains to hazard evaluation. J Volcanol Geotherm Res 151:258–268. doi: 10.1016/j.volgeores.2007.11.024 CrossRefGoogle Scholar
  4. Appleton JD (1972) Petrogenesis of the potassium-rich lavas from the Roccamonfina Volcano, Roman region Italy. J Petrol 13:425–456Google Scholar
  5. Arai S (1994) Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. J Volcanol Geotherm Res 59:279–293CrossRefGoogle Scholar
  6. Aurisicchio C, Federico M, Gianfagna A (1988) Clinopyroxene chemistry of the high-potassium suite from the Alban Hills, Italy. Mineral Petrol 39:1–19CrossRefGoogle Scholar
  7. Avanzinelli R, Boari E, Conticelli S, Francalanci L, Guarnieri L, Perini G, Petrone CM, Tommasini S, Ulivi M (2005) High precision Sr, Nd and Pb isotopic analyses using the new generation thermal ionization mass spectrometer ThermoFinnigan Triton-Ti. Period Mineral 75:147–166Google Scholar
  8. Avanzinelli R, Elliott T, Tommasini S, Conticelli S (2008) Constraints on the genesis of the potassium-rich Italian volcanics from U/Th disequilibrium. J Petrol 49:195–223. doi: 10.1093/petrology/egm076 CrossRefGoogle Scholar
  9. Avanzinelli R, Lustrino M, Mattei M, Melluso L, Conticelli S (2009) Potassic and ultrapotassic magmatism in the peri-Tyrrhenian region in the frame of the mantle evolution of the Central Mediterranean: the role of sediment recycling at destructive plate margin. Lithos (in press). doi: 10.1016/j.lithos.2009.03.029
  10. Beaubien SE, Ciotoli G, Lombardi S (2003) Carbon dioxide and radon gas hazard in the Alban Hills area (Central Italy). J Volcanol Geotherm Res 123:63–80CrossRefGoogle Scholar
  11. Beccaluva L, Coltorti M, Di Girolamo P, Melluso L, Milani L, Morra V, Siena F (2002) Petrogenesis and evolution of Mt.Vulture alkaline volcanism (Southern Italy). Mineral Petrol 74:277–297CrossRefGoogle Scholar
  12. Bell K, Castorina F, Rosatelli G, Stoppa F (2003) Large scale mantle plume activity below Italy. Isotopic evidence and volcanic consequences. Geophys Res Abstr 5:14217Google Scholar
  13. Bianchi I, Piana Agostinetti N, De Gori P, Chiarabba C (2008) Deep structure of the Colli Albani volcanic district (central Italy) from receiver functions analysis. J Geophys Res 113:B09313. doi: 10.1029/2007JB005548 CrossRefGoogle Scholar
  14. Bindi L, Cellai D, Melluso L, Conticelli S, Morra V, Menchetti S (1999) Crystal chemistry of clinopyroxene from alkaline undersaturated rocks of the Monte Vulture Volcano, Italy. Lithos 46:259–274. doi: 10.1016/S0024-4937(98)00069-3 CrossRefGoogle Scholar
  15. Boari E, Conticelli S (2007) Mineralogy and petrology of Mg-rich calc-alkalic, potassic, and ultrapotassic associated rocks: the Middle Latin Valley monogenetic volcanoes, Roman Magmatic Province, Southern Italy. Can Mineral 45:1443–1469. doi: 10.2113/gscanmin.45.6.1000 CrossRefGoogle Scholar
  16. Boari E, Tommasini S, Laurenzi MA, Conticelli S (2009) Transition from ultrapotassic kamafugitic to sub-alkaline magmas: Sr, Nd, and Pb isotope, trace element and 40Ar–39Ar age data from the Middle Latin Valley volcanic field, Roman Magmatic Province, Central Italy. J Petrol (in press). doi: 10.1093/petrology/egp003
  17. Brigatti MF, Caprilli E, Funiciello R, Giordano G, Mottana A, Poppi L (2005) Crystal chemistry of Ferroan phlogopites from the Albano maar lake (Colli Albani Volcano, Central Italy). Eur J Mineral 17:611–621. doi: 10.1127/0935-1221/2005/0017-0611 CrossRefGoogle Scholar
  18. Carapezza ML, Badalamenti B, Cavarra L, Scalzo A (2003) Gas hazard in a densely inhabitated area of Colli Albani Volcano (Cava dei Selci, Roma). J Volcanol Geotherm Res 123:81–94CrossRefGoogle Scholar
  19. Cellai D, Conticelli S, Menchetti S (1994) Crystal-chemistry of clinopyroxene in Italian lamproites and kamafugites: Implications on their genesis. Contrib Mineral Petrol 116:301–315. doi: 10.1007/BF00306499 CrossRefGoogle Scholar
  20. Chiarabba C, Amato A, Delaney PT (1997) Crustal structure, evolution, and volcanic unrest of the Alban Hills, Central Italy. Bull Volcanol 59:161–170CrossRefGoogle Scholar
  21. Chiodini G, Frondini F (2001) Carbon dioxide degassing from the Albani Hills volcanic region, Central Italy. Chem Geol 177:67–83CrossRefGoogle Scholar
  22. Conticelli S (1998) Effects of crustal contamination on ultrapotassic magmas with lamproitic affinity: mineralogical, geochemical and isotope data from the Torre Alfina lavas and xenoliths, Central Italy. Chem Geol 149:51–81. doi: 10.1016/S0009-2541(98)00038-2 CrossRefGoogle Scholar
  23. Conticelli S, Peccerillo A (1990) Petrological significance of high-pressure ultramafic xenoliths from ultrapotassic rocks of Central Italy. Lithos 24:305–322. doi: 10.1016/0024-4937(89)90050-9 CrossRefGoogle Scholar
  24. Conticelli S, Peccerillo A (1992) Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy: petrogenesis and inferences on the evolution of the mantle sources. Lithos 28:221–240. doi: 10.1016/0024-4937(92)90008-M CrossRefGoogle Scholar
  25. Conticelli S, Francalanci L, Santo AP (1991) Petrology of final stage Latera lavas, Vulsini Mts.: mineralogical, geochemical and Sr-isotopic data and their bearing on the genesis of some potassic magmas in Central Italy. J Volcanol Geotherm Res 46:187–212. doi: 10.1016/0377-0273(91)90083-C CrossRefGoogle Scholar
  26. Conticelli S, Manetti P, Menichetti S (1992) Mineralogy, geochemistry and Sr-isotopic in orendites from South Tuscany; constraints on their genesis and evolution. Eur J Mineral 4:1359–1375Google Scholar
  27. Conticelli S, Francalanci L, Manetti P, Cioni R, Sbrana A (1997) Petrology and geochemistry of the ultrapotassic rocks from the Sabatini Volcanic District, Central Italy: the role of evolutionary processes in the genesis of variably enriched alkaline magmas. J Volcanol Geotherm Res 75:107–136. doi: 10.1016/S0377-0273(96)00062-5 CrossRefGoogle Scholar
  28. Conticelli S, Bortolotti V, Principi G, Laurenzi MA, Vaggelli G, D’Antonio M (2001) Petrology, mineralogy and geochemistry of a mafic dyke from Monte Castello, Elba Island, Italy. Ofioliti 26:249–262Google Scholar
  29. Conticelli S, D’Antonio M, Pinarelli L, Civetta L (2002) Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic Rocks: Sr–Nd–Pb Isotope data from Roman Province and Southern Tuscany. Mineral Petrol 74:189–222. doi: 10.1007/s007100200004 CrossRefGoogle Scholar
  30. Conticelli S, Carlson RW, Widom E, Serri G (2007) Chemical and isotopic composition (Os, Pb, Nd, and Sr) of Neogene to Quaternary calc-alkalic, shoshonitic and ultrapotassic mafic rocks from the Italian Peninsula: inferences on the nature of their mantle sources. In: Beccaluva L, Bianchini G, Wilson M (eds) Cenozoic volcanism in the Mediterranean Area. Geol Soc Am Spec Paper 418:171–202. doi: 10.1130/2007.2418(09)
  31. Conticelli S, Guarnieri L, Farinelli A, Mattei M, Avanzinelli R, Bianchini G, Boari E, Tommasini S, Tiepolo M, Prelevic D, Venturelli G (2009a) Trace elements and Sr–Nd–Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 107:68–92. doi: 10.1016/j.lithos.2008.07.016 CrossRefGoogle Scholar
  32. Conticelli S, Marchionni S, Rosa D, Giordano G, Boari E, Avanzinelli R (2009b) Shoshonite and sub-alkaline magmas from an ultrapotassic volcano: Sr–Nd–Pb isotope data on the Roccamonfina volcanic rocks, Roman Magmatic Province, Southern Italy. Contrib Mineral Petrol 157:41–63. doi: 10.1007/s00410-008-0319-8 CrossRefGoogle Scholar
  33. Cundari A, Ferguson AK (1991) Petrogenetic relationships between melilitite and lamproite in the Roman Comagmatic Region: the lavas of San Venanzo and Cupaello. Contrib Mineral Petrol 107:343–357CrossRefGoogle Scholar
  34. Dallai L, Freda C, Gaeta M (2004) Oxygen isotopic geochemistry of pyroclastic clinopyroxene monitors carbonate contributions to Roman-type ultrapotassic magmas. Contrib Mineral Petrol 148:247–263. doi: 10.1007/s00410-004-0602-2 CrossRefGoogle Scholar
  35. De Benedetti AA, Funiciello R, Giordano G, Caprilli E, Diano G, Paterne M (2008) Volcanology history and legends of the Albano maar. J Volcanol Geotherm Res 176:387–406. doi: 10.1016/j.jvolgeores.2008.01.035 CrossRefGoogle Scholar
  36. De Rita D, Rosa C (1991) Definizione della stratigrafia e della geocronologia di alcune effusioni laviche nell’area dei Colli Albani (Lava dell’Acquacetosa e Lava di Vallerano, Roma). Rend Soc Geol Ital 13:143–146Google Scholar
  37. De Rita D, Funiciello R, Parotto M (1988) Geological map of the Colli Albani volcanic complex (“Vulcano Laziale”). CNR, Prog Fin Geodinamica, RomaGoogle Scholar
  38. De Rita D, Faccenna C, Funicello R, Rosa C (1995) Stratigraphy and volcano-tectonics. In: Trigila R (ed) The volcano of the Alban Hills. Universita degli Studi di Roma bLa SapienzaQ, Rome, pp 33–71Google Scholar
  39. De Rita D, Giordano G, Esposito A, Fabbri M, Rodani S (2002) Large volume, Middle Pleistocene, phreatomagmatic ignimbrites from the Colli Albani Volcano: stratigraphy, eruptive history and structural control. J Volcanol Geotherm Res 118:77–98CrossRefGoogle Scholar
  40. de Vries JL, Jenkins R (1971) Spettrometria a raggi X in pratica. Biblioteca Tecnica Philips, 160 ppGoogle Scholar
  41. Deniel C, Pin C (2001) Single-stage method for the simultaneous isolation of lead and strontium from silicate samples for isotopic measurements. Anal Chim Acta 426:95–103CrossRefGoogle Scholar
  42. DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202CrossRefGoogle Scholar
  43. Di Battistini G, Montanini A, Vernia L, Venturelli G, Tonarini S (2001) Petrology of melilite-bearing rocks from the Montefiascone Volcanic complex (Roman Magmatic Province): new insights into the ultrapotassic volcanism of Central Italy. Lithos 59:1–24CrossRefGoogle Scholar
  44. Di Filippo M, Toro B (1995) Gravity features. In: Trigila R (ed) Special volume: the volcano of the Alban Hills. Universita degli Studi di Roma bLa SapienzaQ, Rome, pp 213–219Google Scholar
  45. Di Girolamo P, Melluso L, Morra V, Secchi FAG (1995) Evidence of interaction between mafic and intermediate magmas in the youngest activity phase of activity at Ischia Island. Period Mineral 64:393–411Google Scholar
  46. Downes H, Kostoula T, Jones AP, Beard AD, Thirlwall MF, Bodinier J-L (2002) Geochemistry and Sr–Nd isotopic compositions of mantle xenoliths from the Monte Vulture carbonatite-melilitite volcano, central southern Italy. Contrib Mineral Petrol 144:78–92Google Scholar
  47. Faccenna C, Funiciello R, Mattei M (1994) Late Pleistocene N–S shear zones along Latium Tyrrhenian margin: structural characters and volcanological implications. Boll Geofis Teor App 36:141–144Google Scholar
  48. Federico M, Peccerillo A (2002) Mineral chemistry and petrogenesis of granular ejecta from the Alban Hills volcano (Central Italy). Mineral Petrol 74:223–252CrossRefGoogle Scholar
  49. Ferrara G, Laurenzi MA, Taylor HP Jr, Tonarini S, Turi B (1985) Oxygen and Sr-isotope studies of K-rich volcanic rocks from the Alban Hills, Italy. Earth Planet Sci Lett 75:13–28CrossRefGoogle Scholar
  50. Ferrari L, Conticelli S, Burlamacchi L, Manetti P (1996) Volcanological Evolution of the Monte Amiata Volcanic Center, Southern Tuscany, Central Italy: New Geological and Petrochemical data. Acta Vulcanologica 8:41–56Google Scholar
  51. Foley SF (1992a) Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos 28:187–204CrossRefGoogle Scholar
  52. Foley SF (1992b) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28:435–453CrossRefGoogle Scholar
  53. Foley SF (1994) Geochemische und experimentelle Untersuchungen zur genese der kalireichen Magmatite. N Jb Min Abh 167:1–55Google Scholar
  54. Foley SF, Jenner GA (2004) Trace element partitioning in lamproitic magmas—the Gaussberg olivine leucitite. Lithos 75:19–38CrossRefGoogle Scholar
  55. Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics classification and constraints for petrogenetic models. Earth-Sci Rev 24:81–134CrossRefGoogle Scholar
  56. Fornaseri M, Scherillo A, Ventriglia U (1963) La regione vulcanica dei Colli Albani. CNR, 561 ppGoogle Scholar
  57. Francalanci L (1989) Trace element partition coefficients for minerals in shoshonitic and calc-alkaline rocks from Stromboli volcano, Aeolian Islands. N Jb Min Abh 162:229–247Google Scholar
  58. Francalanci L, Peccerillo A, Poli G (1987) Partition coefficients for minerals in potassium-alkaline rocks: Data from Roman Province (Central Italy). Geochem J 21:1–10Google Scholar
  59. Francalanci L, Taylor SR, McCulloch MT, Woodhead J (1993) Geochemical and isotopic variations in calc-alkaline rocks of the Aeolian Arc (Southern Tyrrhenian Sea, Italy): constraints on the magma genesis. Contrib Mineral Petrol 113:300–313. doi: 10.1007/BF00286923 CrossRefGoogle Scholar
  60. Francalanci L, Varekamp JC, Vougioukalakis G, Defant MJ, Innocenti F, Manetti P (1995) Crystal retention, fractionation and crustal assimilation in a convecting magma chamber, Nisyros Volcano, Greece. Bull Volcanol 56:601–620. doi: 10.1007/s004450050067 Google Scholar
  61. Francalanci L, Innocenti F, Manetti P, Savasçin MY (2000) Neogene alkaline volcanism of the Afyon-Isparta area, Turkey: petrogenesis and geodynamic implications. Mineral Petrol 70:285–312. doi: 10.1007/s007100070007 CrossRefGoogle Scholar
  62. Francalanci L, Avanzinelli R, Tommasini S, Heumann A (2007a) A west–east geochemical and isotopic traverse along the subaerial volcanism of the Aeolian Arc, Southern Tyrrhenian Sea, Italy: Inferences on mantle source processes. In: Beccaluva L, Bianchini G, Wilson M. (eds) Cenozoic Volcanism in the Mediterranean Area. Geol Soc Am Spec Pap 418:235–263. doi: 10.1130/2007.2418(12)
  63. Francalanci L, Varekamp JC, Vougioukalakis G, Innocenti F, Manetti P (2007b) Is there a compositional gap at Nisyros volcano? A comment on: Magma generation at the easternmost section of the Hellenic arc: Hf, Nd, Pb, and Sr isotope geochemistry of Nisyros and Yali volcanoes (Greece). Lithos 95:458–461. doi: 10.1016/j.lithos.2006.06.016 CrossRefGoogle Scholar
  64. Franzini M, Leoni L, Saitta M (1972) A simple method to evaluate the matrix effect in X-ray fluorescence analyses. X-Ray Spectrom 1:151–154CrossRefGoogle Scholar
  65. Freda C, Gaeta M, Palladino DM, Trigila R (1997) The Villa Senni Eruption (Alban Hills, Central Italy): the role of H2O and CO2 on the magma chamber evolution and on the eruptive scenario. J Volcanol Geotherm Res 78:103–120CrossRefGoogle Scholar
  66. Freda C, Gaeta M, Karner DB, Marra F, Renne PR, Taddeucci J, Scarlato P, Christensen JN, Dallai L (2006) Eruptive history and petrologic evolution of the Albano multiple maar (Alban Hills, Central Italy). Bull Volcanol 68:567–591. doi: 10.1007/s00445-005-0033-6 CrossRefGoogle Scholar
  67. Freda C, Gaeta M, Misiti V, Mollo S, Dolfi D, Scarlato P (2007) Magma-carbonate interaction: an experimental study on ultrapotassic rocks from Colli Albani (Central Italy). Lithos 101:397–415. doi: 10.106/j.lithos.2007.08.2008 CrossRefGoogle Scholar
  68. Funiciello R, Parotto M (1978) Il substrato sedimentario nell’area dei Colli Albani: considerazioni geodinamiche e paleogeografiche sul margine tirrenico dell’Appennino Centrale. Geol Romana 17:233–287Google Scholar
  69. Funiciello R, Giordano G, de Rita D (2003) The Albano maar lake (Colli Albani Volcani, Italy): recent volcanic activity and evidence of pre-Roman age catastrophic lahar events. J Volcanol Geotherm Res 123:43–61CrossRefGoogle Scholar
  70. Gaeta M, Fabrizio G, Cavarretta G (2000) F-phlogopite in the Alban Hills Volcanic District (Central Italy): indications regarding the role of volatiles in magmatic crystallisation. J Volcanol Geotherm Res 99:179–193CrossRefGoogle Scholar
  71. Gaeta M, Freda C, Christensen JN, Dallai L, Marra F, Karner DB, Scarlato P (2006) Time-dependent geochemistry of clinopyroxene from the Alban Hills (Central Italy): clues to the source and evolution of ultrapotassic magmas. Lithos 86:330–346. doi: 10.1016/j.lithos.2005.05.010 CrossRefGoogle Scholar
  72. Gaeta M, Di Rocco T, Freda C (2009) Carbonate assimilation in open magmatic systems: the role of melt-bearing skarns and cumulate-forming processes. J Petrol . doi: 10.1093/petrology/egp002 Google Scholar
  73. Giordano G, de Rita D, Cas RSA, Rodani S (2002) Valley pond and ignimbrite veneer deposits in the small-volume phreatomagmatic “Peperino Albano” basic ignimbrite, Lago Albano maar, Colli Albani volcano, Italy: influence of topography. J Volcanol Geotherm Res 118:131–144CrossRefGoogle Scholar
  74. Giordano G, De Benedetti AA, Diana A, Diano G, Gaudioso F, Marasco F, Miceli M, Mollo S, Cas RAF, Funiciello R (2006) The Colli Albani mafic caldera (Roma, Italy): stratigraphy, structure and petrology. J Volcanol Geotherm Res 155:49–80. doi: 10.1016/j.jvolgeores.2006.02.009 CrossRefGoogle Scholar
  75. Hawkesworth CJ, Kempton PD, Rogers NW, Ellam RM, van Carlsteren PWC (1990) Continental mantle lithosphere and shallow level enrichments processes in Earth’s mantle. Earth Planet Sci Lett 96:256–268CrossRefGoogle Scholar
  76. Iacono-Marziano G, Gaillard F, Pichavant M (2007) Limestone assimilation and the origin of CO2 emission at the Alban Hills (Central Italy): constraints from experimental petrology. J Volcanol Geotherm Res 166:91–105. doi: 10.1016/j.jvolgeores.2007.07.001 CrossRefGoogle Scholar
  77. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin A (1986) A chemical classification of volcanic rocks on the Total Alkali-Silica diagram. J Petrol 27:745–750Google Scholar
  78. Mariucci T, Pierdominici S, Pizzino L, Marra F, Montone P (2008) Looking into a volcanic area: an overview on the 350 m scientific drilling at Colli Albani (Rome, Italy). J Volcanol Geotherm Res 176:225–240. doi: 10.1026/jvolgeores.2008.04.007 CrossRefGoogle Scholar
  79. Marra F, Taddeucci J, Freda C, Marzocchi W, Scarlato P (2004) Recurrence of volcanic activity along the Roman Comagmatic Province (Tyrrhenian margin of Italy) and its tectonic significance. Tectonics 23:TC4013. doi: 10.1029/2003TC001600
  80. Marra F, Karner DB, Freda C, Gaeta M, Renne P (2008) Large mafic eruptions at Alban Hills Volcanic District (Central Italy): chronostratigraphy, petrography, and eruptive behaviour. J Volcanol Geotherm Res . doi: 10.1026/jvolgeores.2008.11.09 Google Scholar
  81. Melluso L, Morra V, Di Girolamo P (1996) The Mt. Vulture volcanic complex (Italy): evidence for distinct parental magmas and for residual melts with melilite. Mineral Petrol 56:225–250CrossRefGoogle Scholar
  82. Melluso L, Conticelli S, D’Antonio M, Mirco N, Saccani E (2003) Petrology and mineralogy of wollastonite-melilite-bearing pyrometamorphic rocks from Colle Fabbri and Ricetto, Central Apennines, Italy. Am Mineral 88:1287–1299Google Scholar
  83. Melluso L, Conticelli S, D’Antonio M, Mirco N, Saccani E (2005a) Mineralogic and bulk rock composition of Italian wollastonite- and melilite-bearing paralavas and clinker: Further evidence for their pyrometamorphic nature. Am Mineral 90:1926–1933. doi: 10.2138/am.2005.403r CrossRefGoogle Scholar
  84. Melluso L, Conticelli S, D’Antonio M, Mirco N, Saccani E (2005b) Wollastonite-anorthite-gehlenite- and fassaite-bearing rocks: Igneous petrological oddity or paralavas? Am Mineral 90:1940–1944. doi: 10.2138/am.2005.453 CrossRefGoogle Scholar
  85. Mitchell RH (1985) A review of the mineralogy of lamproites. S Afr J Geol 88:411–437Google Scholar
  86. Peccerillo A (1998) Relationships between ultrapotassic and carbonate-rich volcanic rocks in Central Italy: petrogenetic and geodynamic implications. Lithos 43:267–279CrossRefGoogle Scholar
  87. Peccerillo A (2005) Plio-Quaternary volcanism in Italy: petrology, geochemistry, geodynamics. Springer-Verlag, Berlin, p 365Google Scholar
  88. Peccerillo A, Poli G, Tolomeo L (1984) Genesis, evolution and tectonic significance of K-rich volcanics from the Alban Hills (Roman Comagmatic Region) as inferred from trace element geochemistry. Contrib Mineral Petrol 86:230–240CrossRefGoogle Scholar
  89. Perini G, Conticelli S (2002) Crystallization conditions of Leucite-Bearing magmas and their implications on the magmatological evolution of ultrapotassic magmas: The Vico Volcano, Central Italy. Mineral Petrol 74:253–276. doi: 10.1007/s007100200005 CrossRefGoogle Scholar
  90. Perini G, Conticelli S, Francalanci L, Davidson JP (2000) The relationships between potassic and calc-alkaline post-orogenic magmatism at Vico Volcano, Central Italy. J Volcanol Geotherm Res 95:247–272. doi: 10.1016/S0377-0273(99)00123-7 CrossRefGoogle Scholar
  91. Perini G, Tepley FJ III, Davidson JP, Conticelli S (2003) The origin of K-feldspar megacrysts hosted in alkaline potassic rocks: track for low pressure processes in primitive magmas. Lithos 66:223–240. doi: 10.1016/S0024-4937(02)00221-9 CrossRefGoogle Scholar
  92. Perini G, Francalanci L, Davidson JP, Conticelli S (2004) The petrogenesis of Vico Volcano, Central Italy: an example of low scale mantle heterogeneity. J Petrol 45:139–182. doi: 10.1093/petrology/egg084 CrossRefGoogle Scholar
  93. Poli G, Manetti P, Peccerillo A, Cecchi A (1977) Determinazione di alcuni elementi del gruppo delle terre rare in rocce silicatiche per attivazione neutronica strumentale. Rend Soc Ital Mineral Petrol 33:755–763Google Scholar
  94. Porreca M, Mattei M, Giordano G, De Rita D, Funiciello R (2003) Magnetic fabric and implications for pyroclastic flow and lahar emplacement, Albano maar, Italy. J Geophys Res 108:2264CrossRefGoogle Scholar
  95. Porreca M, Mattei M, MacNiocaill C, Giordano G, McClelland E, Funiciello R (2007) Paleomagnetic evidences for low-temperature emplacement of the phreatomagmatic Peperino Albano ignimbrite (Colli Albani volcano, Central Italy). Bull Volcanol 70:877–893. doi: 10.1007/s00445-007-0176-8 CrossRefGoogle Scholar
  96. Prelevic D, Foley SF, Romer R, Conticelli S (2008) Mediterranean Tertiary lamproites derived from multiple source components in postcollisional geodynamics. Geochim Cosmochim Acta 72:2125–2156. doi: 10.1016/j.gca.2008.01.029 CrossRefGoogle Scholar
  97. Rogers NW, Hawkesworth CJ, Parker RJ, Marsh JS (1985) The geochemistry of potassic lavas from Vulsini, Central Italy, and implications for mantle enrichment processes beneath the Roman region. Contrib Mineral Petrol 90:244–257CrossRefGoogle Scholar
  98. Savelli C (1967) The problem of rock assimilation by Somma-Vesuvius magma. I. composition of Somma and Vesuvius lavas. Contrib Mineral Petrol 16:328–353CrossRefGoogle Scholar
  99. Scarrow JH, Cox KG (1995) Basalts generated by decompressive adiabatic melting of a mantle plume: a case study from the Isle of Skye, NW Scotland. J Petrol 36:3–22Google Scholar
  100. Shapiro L, Brannock WW (1962) Rapid analysis of silicate, carbonate and phosphate rocks. US Geol Surv Bull 1144:1–55Google Scholar
  101. Stracke A, Hofmann AW, Hart SR (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys Geosyst 6:19. doi: 10.029/2004GC000824 May2005, Q05007CrossRefGoogle Scholar
  102. Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Spec Publ 42:313–345Google Scholar
  103. Thirlwall MF (1991) Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chem Geol 94:85–104CrossRefGoogle Scholar
  104. Thomsen TB, Schmidt MW (2008a) Melting of carbonated pelites at 2.5-5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett 267:17–31. doi: 10.1016/j.epsl.2007.11.027 CrossRefGoogle Scholar
  105. Thomsen TB, Schmidt MW (2008b) The biotite to phengite reaction and mica-dominated melting in fluid+carbonate-saturated pelites at high pressures. J Petrol 49:1889–1914. doi: 10.1093/petrology/egn051 CrossRefGoogle Scholar
  106. Tommasini S, Heumann A, Avanzinelli R, Francalanci L (2007) The fate of high-angle dipping slabs in the subduction factory: an integrated trace element and radiogenic isotope (U, Th, Sr, Nd, Pb) study of Stromboli Volcano, Aeolian Arc, Italy. J Petrol 48:2407–2430. doi: 10.1093/petrology/egm066 CrossRefGoogle Scholar
  107. Tuccimei P, Giordano G, Tedeschi M (2006) CO2 release variations during the last 2000 years at the Colli Albani volcano (Roma, Italy) from speleothems studies. Earth Planet Sci Lett 243:449–462. doi: 10.1016/j.epsl.2006.01.009 CrossRefGoogle Scholar
  108. Vaggelli G, Olmi F, Conticelli S (1999) Evaluation of analytical errors during microprobe analyses of silicate minerals international reference samples. Acta Vulcanol 11:297–303Google Scholar
  109. Villa IM (1992) Datability of Quaternary volcanic rocks: an 40Ar/39Ar perspective on age conflicts in lavas from the Alban Hills, Italy. Eur J Mineral 4:369–383Google Scholar
  110. Voltaggio M, Andretta D, Taddeucci A (1994) 230Th-238U data in conflict with 40Ar/39Ar leucite ages for quaternary volcanic rocks of the Alban Hills, Italy. Eur J Mineral 6:209–216Google Scholar
  111. Voltaggio M, Barbieri M (1995) V. Geochronology. In: R. Trigila (ed), The Volcano of the Alban Hills, Roma, 167–192Google Scholar
  112. Washington HS (1906) The Roman Comagmatic Region. Carnegie Inst Wash Yb 36:1–220Google Scholar
  113. Washington HS (1927) The italite locality of Villa Senni. Am J Sci 14:173–198Google Scholar
  114. Watkins SD, Giordano G, Cas RAF, de Rita D (2002) Emplacement processes of the mafic Villa Senni Eruption Unit (VSEU) ignimbrite succession, Colli Albani Volcano, Italy. J Volcanol Geotherm Res 118:173–203CrossRefGoogle Scholar
  115. Wendlandt RF, Eggler DH (1980a) The origin of potassic magmas: 1.Melting relations in the systems KAlSiO4–Mg2SiO4–SiO2 and KAlSiO4–MgO–SiO2–CO2 to 30 kb. Am J Sci 280:385–420Google Scholar
  116. Wendlandt RF, Eggler DH (1980b) The origin of potassic magmas: 2. Stability of phlogopite in natural spinel lherzolite and in the system KAlSiO4–MgO–SiO2–H2O–CO2 at high pressure and high temperature. Am J Sci 280:421–458Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Elena Boari
    • 1
  • Riccardo Avanzinelli
    • 1
    • 5
  • Leone Melluso
    • 2
  • Guido Giordano
    • 3
  • Massimo Mattei
    • 3
  • Arnaldo A. De Benedetti
    • 3
  • Vincenzo Morra
    • 2
  • Sandro Conticelli
    • 1
    • 4
  1. 1.Dipartimento di Scienze della TerraUniversità degli Studi di FirenzeFlorenceItaly
  2. 2.Dipartimento di Scienze della TerraUniversità degli Studi di Napoli Federico IINaplesItaly
  3. 3.Dipartimento di Scienze GeologicheUniversità degli Studi Roma TreRomeItaly
  4. 4.Sezione di Firenze, Istituto di Geoscienze e GeorisorseConsiglio Nazionale delle RicercheFlorenceItaly
  5. 5.Department of Earth SciencesUniversity of BristolBristolUK

Personalised recommendations