Bulletin of Volcanology

, 71:919 | Cite as

Giant gas bubbles in a rheomorphic vent fill at the Las Cañadas caldera, Tenerife (Canary Islands)

  • Carles SorianoEmail author
  • Daniele Giordano
  • Inés Galindo
  • Marcel Hürlimann
  • Paola Ardia
Research Article


During rheomorphism subsequent to fallout deposition, a portion of the densely welded fallout of the La Grieta Member flowed back into the vent from where it was erupted, while the rest of it flowed down the outer slopes of the Las Cañadas caldera in Tenerife. The welded fallout and conduit-vent structure are physically connected and constitute a rare example of this type of deposits rooted to its feeder conduit and exposed in the caldera wall. The lower part of the vent-filling rheomorphic rocks shows gas bubbles and cavities that increase in size (up to 4 m) down vent. Bubbles are deformed against other bubbles, against the steep vent walls, flattened parallel to the flow foliation planes, and elongated parallel to the flow lineation and flow fold axes. The preservation of such giant bubbles, rather than their formation, seems to be a pretty unique feature of the phonolitic products investigated here and it is likely the result of the combination of factors that acted to preserve, in the surrounding of the glass transition interval, the sealing and the late stage cooling of a pressurized system. In addition, strain drop at the base of the vent-filling rheomorphic flow caused by flow stopping against vertical vent walls may have promoted rapid gas exsolution and the formation of large bubbles.


Volcanic vent Rheomorphism Viscosity Shear stress 



We thank Laura Pioli, Arnau Folch, Joan Andújar, Andrew Harris, Lucia Gurioli and Joachim Gottsmann for many thoughtful discussions, and Andrea Di Muro for the KFT measurements. Nancy Riggs kindly reviewed a first version of this manuscript. This research has been funded by the Ministerio de Ciencia y Tecnología (MCYT) project BTE2003-08026.


  1. Almond DC (1971) Ignimbrite vents in the Sabaloka cauldron, Sudan. Geol Mag 108:159–176CrossRefGoogle Scholar
  2. Atkinson SS, Lambert RJ (1990) The Roza member feeder dyke system, Columbia River basalt group, USA. Compositional variation and emplacement. In: Parker AJ, Rickwood PC, Tucker DH (eds) Mafic dykes and emplacement mechanisms. Balkema, Rotterdam, pp 447–459Google Scholar
  3. Bryan SE, Martí J, Leosson M (2002) Petrology and geochemistry of the Bandas del Sur Formation, Las Cañadas Edifice, Tenerife (Canary Islands). J Petrol 43:1815–1856CrossRefGoogle Scholar
  4. Caricchi L, Burlini L, Ulmer P, Gerya T, Vassalli M, Papale P (2007) Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet Sci Lett 264:402–419CrossRefGoogle Scholar
  5. Carrigan CR, Shubert G, Eichelberger JC (1992) Thermal regimes of single- and two-phase magmatic flow in dikes. J Geophys Res 97:17377–17393CrossRefGoogle Scholar
  6. Castro J, Cashman K, Joslin N, Olmsted B (2002) Structural origin of large gas cavities in the big obsidian flow, Newberry volcano. J Volcanol Geohterm Res 114:313–330CrossRefGoogle Scholar
  7. Coward MP (1980) The analysis of flow profiles in a basaltic dyke using strained vesicles. J Geol Soc Lond 137:605–615CrossRefGoogle Scholar
  8. Ekren EB, Byers FM (1976) Ash-flow fissure vent in the west-central Nevada. Geology 4:247–251CrossRefGoogle Scholar
  9. Fink J (1980) Surface folding and viscosity of rhyolite flows. Geology 8:250–254CrossRefGoogle Scholar
  10. Giordano D, Nichols ARL, Dingwell D (2005) Glass transition temperatures of natural hydrous melts: a relationship with shear viscosity and implications for the welding process. J Volcanol Geotherm Res 142:105–118CrossRefGoogle Scholar
  11. Giordano D, Russell JK, Dingwell DB (2008a) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134CrossRefGoogle Scholar
  12. Giordano D, Potuzak M, Romano C, Dingwell DB, Nowak M (2008b) Viscosity and glass transition temperature of hydrous melts in the system CaAl2Si2O8–CaMgSi2O6. Chem Geol 256:203–215CrossRefGoogle Scholar
  13. Gottsmann J, Dingwell DB (2001) Cooling dynamics of spatter-fed phonolite obsidian flows on Tenerife, Canary Islands. J Volcanol Geotherm Res 105:323–342CrossRefGoogle Scholar
  14. Gudmundsson A, Friese N, Galindo I, Philipp SJ (2008) Dike-induced reverse faulting in a graben. Geology 36:123–126CrossRefGoogle Scholar
  15. Ingerson E (1953) Giant amygdules in andesite from the southern Quitman Mountains, Texas. Am Mineral 38:1057–1064Google Scholar
  16. Jensen RA (1993) Explosion craters and giant gas bubbles on Holocene rhyolite flows at Newberry Crater, Oregon. Or Geol 55:13–19Google Scholar
  17. Koronovsky NV (1971) The structure of the feeding channels of the ignimbrite and tufflava complexes of the Northern Caucasus. Bull Volcanol 34:639–647CrossRefGoogle Scholar
  18. Le Bas MJ, Maitre RW, Streckeisen AL, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750Google Scholar
  19. Manga M, Loewenberg M (2001) Viscosity of magmas containing highly deformable bubbles. J Volcanol Geotherm Res 105:19–24CrossRefGoogle Scholar
  20. Manga M, Castro J, Cashman KV, Loewenberg M (1998) Rheology of bubble-bearing magmas. J Volcanol Geotherm Res 87:15–28CrossRefGoogle Scholar
  21. Martí J, Ablay GJ (1994) Origin and significance of welded pyroclastic rocks from Tenerife, Canary Islands. In: Abstracts of the IAVCEI International Volcanological Congress, Ankara, Turkey, QE521.5 I38 1994Google Scholar
  22. Martí J, Mitjavila J, Araña V (1994) Stratigraphy, structure and geochronology of the Las Cañadas caldera (Tenerife, Canary Islands). Geol Mag 131:715–727CrossRefGoogle Scholar
  23. Philpotts AR, Philpotts DE (2007) Upward and downward flow in a camptonite dike as recorded by deformed vesicles and the anisotropy of magnetic susceptibility (AMS). J Volcanol Geotherm Res 161:81–94CrossRefGoogle Scholar
  24. Rosi M, Landi P, Polacci M, Di Muro A, Zandomeneghi D (2004) Role of conduit shear on ascent of the crystal-rich magma feeding the 800-year-B.P Plinian eruption of Quilotoa (Ecuador). Bull Volc 66:307–321CrossRefGoogle Scholar
  25. Rust AC, Manga M, Cashman KV (2003) Determining flow type, shear rate, and shear stress in magmas from bubble shapes and orientations. J Volcanol Geotherm Res 122:111–132CrossRefGoogle Scholar
  26. Sahagian DL, Proussevitch AA (1996) Thermal effects of magma degassing. J Volcanol Geotherm Res 74:19–38CrossRefGoogle Scholar
  27. Soriano C, Zafrilla S, Martí J, Bryan S, Cas R, Ablay G (2002) Welding and rheomorphism of phonolitic fallout deposits from the Las Cañadas caldera, Tenerife, Canary Islands. Geol Soc Am Bull 114:883–895CrossRefGoogle Scholar
  28. Soriano C, Galindo I, Martí J, Wolff J (2006) Conduit-vent structures and related proximal deposits in the Las Cañadas caldera, Tenerife, Canary Islands. Bull Volcanol 69:217–231CrossRefGoogle Scholar
  29. Stein DJ, Spera FJ (2002) Shear viscosity of rhyolite-vapor emulsions at magmatic temperatures by concentric cylinder rheometry. J Volcanol Geotherm Res 113:243–258CrossRefGoogle Scholar
  30. Toramaru A (1988) Formation and propagation pattern in two-phase flow systems with application to volcanic eruptions. Geophys J R Astron Soc 95:613–623Google Scholar
  31. Wilding M, Webb SL, Dingwell DB, Ablay G, Martí J (1996) Cooling variation in natural volcanic glasses from Tenerife, Canary Islands. Contrib Mineral Petrol 125:151–160CrossRefGoogle Scholar
  32. Wolff JA, Storey M (1983) The volatile component of some pumice-forming alkaline magmas from the Azores and Canary Islands. Contrib Mineral Petrol 82:66–74CrossRefGoogle Scholar
  33. Wolff JA, Wright JV (1981) Rheomorphism of welded tuffs. J Volcanol Geotherm Res 10:13–34CrossRefGoogle Scholar
  34. Zafrilla S (2001) Relationship between magmatic evolution and volcanic activity in the Las Cañadas edifice, Tenerife, Canary Islands. Ph.D. thesis, Universitat de Barcelona, BarcelonaGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Carles Soriano
    • 1
    Email author
  • Daniele Giordano
    • 2
  • Inés Galindo
    • 3
  • Marcel Hürlimann
    • 4
  • Paola Ardia
    • 5
  1. 1.Institut de Ciències de la Terra Jaume Almera CSICBarcelonaSpain
  2. 2.Dipartimento di Scienze GeologicheUniversità degli Studi di Roma TreRomeItaly
  3. 3.Instituto Geológico y Minero de España, Oficina de Proyectos de Las PalmasLas PalmasSpain
  4. 4.Department of Geotechnical Engineering and GeosciencesTechnical University of CataloniaBarcelonaSpain
  5. 5.Institute for Mineralogy and PetrologyETH ZurichZurichSwitzerland

Personalised recommendations