Bulletin of Volcanology

, Volume 71, Issue 6, pp 659–670

Halogen oxide measurements at Masaya Volcano, Nicaragua using active long path differential optical absorption spectroscopy

Research Article


Active Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) measurements of halogen oxides were conducted at Masaya Volcano, in Nicaragua from April 14 to 26, 2007. The active LP-DOAS system allowed night-time halogen measurements and reduced the ClO detection limit by an order of magnitude when compared to previous passive DOAS measurements, as wavelengths below 300 nm could be used for the DOAS retrievals. BrO was detected with an average BrO/SO2 molecular ratio of approximately 3 × 10−5 during the day. However, BrO values were below the detection limit of the instrument for all night-time measurements, a strong indication that BrO is not directly emitted, but rather the result of photochemical formation in the plume itself according to the autocatalytic “bromine explosion” mechanism. Despite the increased sensitivity, both ClO and OClO could not be detected. The achieved upper limits for the X/SO2 ratios were 5 × 10−3 and 7 × 10−6, respectively. A rough calculation suggests that ClO and OClO should be present at similar abundances in volcanic plumes. Since the DOAS technique is orders of magnitude more sensitive for OClO than for ClO, this indicates that OClO should always be detectable in plumes in which ClO is found. However, further LP-DOAS studies are needed to conclusively clarify the role of chlorine oxides in volcanic plumes.


Volcanoes emissions plume chemistry halogens DOAS spectroscopy 


  1. Aiuppa A, Federico C, Giudice G, Gurrieri S, Paonita A, Valenza M (2004) Plume chemistry provides insights into mechanisms of sulfur and halogen degassing in basaltic volcanoes. Earth Planet Sc Lett 222:469–483CrossRefGoogle Scholar
  2. Aiuppa A, Moretti R, Federico C, Gaetano G, Gurrieri S, Liuzzo M, Papale P, Shinohara H, Valenza M (2007) Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35:1115–1118CrossRefGoogle Scholar
  3. Alicke B, Hebestreit K, Stutz J, Platt U (1999) Iodine oxide in the marine boundary layer. Nature 397:572–573CrossRefGoogle Scholar
  4. Allan BJ, Plane JMC, McFiggans G (2001) Observations of OIO in the remote marine boundary layer. Geophys Res Lett 28:1945–1948CrossRefGoogle Scholar
  5. Arndt RL, Carmichael GR, Streets DG, Bhatti N (1997) Sulfur dioxide emissions and sectorial contributions to sulfur deposition in Asia. Atmos Environ 31:1553–1572CrossRefGoogle Scholar
  6. Birks JW, Shoemaker B, Leck TJ, Borders RA, Hart LJ (1977) Studies of reactions of importance in the stratosphere. II. Reactions involving chlorine nitrate and chlorine dioxide. J Chem Phys 66:4591–4599CrossRefGoogle Scholar
  7. Bobrowski N (2005) Volcanic Gas Studies by MAX-DOAS. PhD thesis, University of Heidelberg, HeidelbergGoogle Scholar
  8. Bobrowski N, Platt U (2007) SO2/BrO ratios studied in five volcanic plumes. J Volcanol Geoth Res 166:147–160CrossRefGoogle Scholar
  9. Bobrowski N, Hönninger G, Galle B, Platt U (2003) Detection of bromine monoxide in a volcanic plume. Nature 423:273–276CrossRefGoogle Scholar
  10. Bobrowski N, von Glasow R, Aiuppa A, Inguaggiato S, Louban I, Ibrahim OW, Platt U (2007) Reactive halogen chemistry in volcanic plumes. J Geosphys Res 112:D06311CrossRefGoogle Scholar
  11. Bogumil K, Orphal J, Homan T, Voigt S, Spietz P, Fleischmann O, Vogel A, Hartmann M, Bovensmann H, Frerick J, Burrows J (2003) Measurements of molecular absorption spectra with the SCIAMACHY Pre-Flight Model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2,380 nm region. J Photoch Photobio A: Chem 157:167–184CrossRefGoogle Scholar
  12. Burton M, Oppenheimer C, Horrocks LA, Francis PW (2001) Diurnal changes in volcanic plume chemistry observed by lunar and solar occultation spectroscopy. Geophys Res Lett 28:843–846CrossRefGoogle Scholar
  13. Burton MR, Allard P, Murè F, La Spina A (2007a) Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity. Science 317:227CrossRefGoogle Scholar
  14. Burton MR, Mader HM, Polacci M (2007b) The role of gas percolation in quiescent degassing of persistently active basaltic volcanoes. Earth Planet Sc Lett 264:46–60CrossRefGoogle Scholar
  15. Delmelle P, Baxter P, Beaulieu A, Burton M, Francis P, Garcia-Alavarez J, Horrocks L, Navarro M, Oppenheimer C, Rothery D, Rymer H, Amand KS, Stix J, Strauch W, Williams-Jones G (1999) Origin, effects of Masaya Volcano’s continued unrest probed in Nicaragua. EOS Trans Am Geophys Union 80:575–581Google Scholar
  16. Friedl RR, Sander SP (1989) Kinetics and product studies of the reaction of ClO + BrO using flash photolysis-ultraviolet absorption. J Phys Chem 93:4764–4771CrossRefGoogle Scholar
  17. Galle B, Oppenheimer C, Geyer A, McGonigle AJS, Edmonds M, Horrocks L (2002) A miniaturized ultraviolet spectrometer for remote sensing of SO2 fluxes: A new tool for volcano surveillance. J Volcanol Geoth Res 119:241–254CrossRefGoogle Scholar
  18. Gerlach TM (2004) Volcanic sources of tropospheric ozone-depleting trace gases. Geochem Geophy Geosy 5:Q09007CrossRefGoogle Scholar
  19. Graf H-F, Langmann B, Feichter J (1998) The contribution of Earth degassing to the atmospheric sulfur budget. Chem Geol 147:131–145CrossRefGoogle Scholar
  20. Halmer MM, Schmincke H-U, Graf H-F (2002) The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years. J Volcanol Geoth Res 115:511–528CrossRefGoogle Scholar
  21. Hausmann M, Platt U (1994) Spectroscopic measurement of bromine oxide and ozone in the high Arctic during Polar Sunrise Experiment 1992. J Geophys Res 99:25399–25413CrossRefGoogle Scholar
  22. Hebestreit K, Stutz J, Rosen D, Matveiv V, Peleg M, Luria M, Platt U (1999) DOAS measurements of tropospheric bromine oxide in mid-latitudes. Science 283:55–57CrossRefGoogle Scholar
  23. Hönninger G, Leser H, Sebastián O, Platt U (2004) Ground-based measurements of halogen oxides at the Hudson Bay by active longpath DOAS and passive MAX-DOAS. Geophys Res Lett 31:L04111CrossRefGoogle Scholar
  24. Horrocks L, Burton MR, Francis P, Oppenheimer C (1999) Stable gas plume composition measured by OP-FTIR spectroscopy at Masaya Volcano, Nicaragua, 1998–1999. Geophys Res Lett 26:3497–3500CrossRefGoogle Scholar
  25. Kaleschke L, Neff B, Plane JMC, Platt U, Richter A, Roscoe HK, Sander R, Shepson P, Sodeau J, Steffen A, Wagner T, Wolff E (2007) Halogens and their role in polar boundary-layer ozone depletion. Atmos Chem Phys 7:4375–4418CrossRefGoogle Scholar
  26. Kraus S (2004) DOASIS: DOAS Intelligent System.Google Scholar
  27. Lee C, Kim YJ, Tanimoto H, Bobrowski N, Platt U, Mori T, Yamamoto K, Hong CS (2005) High ClO and ozone depletion observed in the plume of Sakurajima Volcano, Japan. Geophys Res Lett 32:21809CrossRefGoogle Scholar
  28. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168Google Scholar
  29. Marquardt DW (1963) An algorithm for least squares estimation of non-linear parameters. J Soc Ind Appl Math 11:431–441CrossRefGoogle Scholar
  30. Martin RS, Mather TA, Pyle DM (2006) High-temperature mixtures of magmatic and atmospheric gases. Geochem Geophy Geosy 7:Q04006CrossRefGoogle Scholar
  31. McBirney AR (1956) The Nicaraguan volcano Masaya and its Caldera. EOS Trans Am Geophys Union 37:83–96Google Scholar
  32. McGonigle AJS, Oppenheimer C, Galle B, Mather TA, Pyle DM (2002) Walking traverse and scanning DOAS measurements of volcanic gas emission rates. Geophys Res Lett 29:1985CrossRefGoogle Scholar
  33. McGonigle AJS, Delmelle P, Oppenheimer C, Tsanev VI, Delfosse T, Horton H, Williams-Jones G, Mather TA (2004) SO2 depletion in tropospheric volcanic plumes. Geophys Res Lett 31:L13201CrossRefGoogle Scholar
  34. Mori T, Mori T, Kazahaya K, Ohwada M, Hirabayashi J, Yoshikawa S (2006) Effect of UV scattering on SO2 emission rate measurements. Geophys Res Lett 33:L17315CrossRefGoogle Scholar
  35. NOVAC (2005) Network for Observation of Volcanic and Atmospheric Change. http://www.novac-project.eu
  36. O’Dwyer M, Padgett MJ, McGonigle AJS, Oppenheimer C, Inguaggiato S (2003) Real-time measurement of volcanic H2S and SO2 concentrations by UV spectroscopy. Geophys Res Lett 30:1652CrossRefGoogle Scholar
  37. Oppenheimer C, Tsanev VI, Braban CF, Cox RA, Adams JW, Aiuppa A, Bobrowski N, Delmelle P, Barclay J, McGonigle AJS (2006) BrO formation in volcanic plumes. Geochim Cosmochim Ac 70:2935–2941CrossRefGoogle Scholar
  38. Platt U (1994) Differential Optical Absorption Spectroscopy (DOAS). In: Sigrist MW (ed) Monitoring by Spectroscopic Techniques. Wiley, New York, pp 27–84Google Scholar
  39. Platt U, Hönninger G (2003) The role of halogen species in the troposphere. Chemosphere 52:325–338CrossRefGoogle Scholar
  40. Platt U, Lehrer E (1997) Arctic Tropospheric Ozone Chemistry, ARCTOC. In final report EU-Proj. EV5V-CT93-0318 European UnionGoogle Scholar
  41. Platt U, Stutz J (2008) Differential Optical Absorption Spectroscopy—Principles and Applications. Springer, Berlin, pp 1–597CrossRefGoogle Scholar
  42. Rymer H, Van Wyk de Vries B, Stix J, Williams-Jones G (1998) Pit crater structure and processes governing persistent activity at Masaya Volcano, Nicaragua. Bull Volcanol 59:345–355CrossRefGoogle Scholar
  43. Saiz-Lopez A, Plane JMC (2004) Novel iodine chemistry in the marine boundary layer. Geophys Res Lett 31:L04112CrossRefGoogle Scholar
  44. Saiz-Lopez A, Plane JMC, Shillito JA (2004) Bromine oxide in the mid-latitude marine boundary layer. Geophys Res Lett 31:L03111CrossRefGoogle Scholar
  45. Saiz-Lopez A, Mahajan AS, Salmon RA, Bauguitte SJ-B, Jones AE, Roscoe HK, Plane JMC (2007) Boundary layer halogens in coastal Antarctica. Science 317:348–351CrossRefGoogle Scholar
  46. Simon FG, Schneider W, Moortgat GK, Burrows J (1990) A study of the ClO absorption cross-section between 240 and 310 nm and the kinetics of the self-reaction at 300 K. J Photoch Photobio 55:1–23CrossRefGoogle Scholar
  47. Simpson WR, von Glasow R, Riedel K, Anderson P, Ariya P, Bottenheim J, Burrows J, Carpenter L, Frieß U, Goodsite ME, Heard D, Hutterli M, Jacobi H-W, Kaleschke L, Neff B, Plane J, Platt U, Richter A, Roscoe H, Sander R, Shepson P, Sodeau J, Steffen A, Wagner T, Wolff E (2007) Halogens and their role in polar boundary-layer ozone depletion. Atmos Chem Phys 7:4375–4418CrossRefGoogle Scholar
  48. Stutz J, Platt U (1996) Numerical analysis and error estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods. Appl Opt 35:6041–6053CrossRefGoogle Scholar
  49. Stutz J, Ackermann R, Fast JD, Barrie L (2002) Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah. Geophys Res Lett 29:1380CrossRefGoogle Scholar
  50. Tuckermann M, Ackermann R, Gölz C, Lorenzen-Schmidt H, Senne T, Stutz J, Trost B, Unold W, Platt U (1997) DOAS-observation of halogen radical-catalyzed Arctic boundary layer ozone destruction during the ARCTOC-campaigns 1995 and 1996 in Ny-Alesund, Spitsbergen. Tellus 49B:533–555Google Scholar
  51. Voigt S, Orphal J, Bogumil K, Burrows JP (2001) The temperature dependence (203–293 K) of the absorption cross sections of O3 in the 230–850 nm region measured by Fourier-transform spectroscopy. J Photoch Photobio 143:1–9CrossRefGoogle Scholar
  52. von Glasow R, Crutzen PJ (2007) Tropospheric halogen chemistry. In: Holland HD, Turekian KK, Keeling RF (eds) Treatise on Geochemistry, Vol. vol. 4. Elsevier-Pergamon, Amsterdam, pp 21–64Google Scholar
  53. Wahner A, Tyndall G, Ravishankara AR (1987) Absorption cross sections for OClO as a function of temperature in the wavelength range 240–480 nm. J Phys Chem 91:2734–2738CrossRefGoogle Scholar
  54. Wahner A, Ravishankara AR, Sander SP, Friedl RR (1988) Absorption cross section of BrO between 312 and 385 nm at 298 and 223 K. Chem Phys Lett 152:507–512CrossRefGoogle Scholar
  55. Wennberg P (1999) Bromine explosion. Nature 397:299–300CrossRefGoogle Scholar
  56. Williams SN (1983) Geology and eruptive mechanisms of Masaya caldera complex. PhD thesis, Dartmouth College, Hanover, N.H.Google Scholar
  57. Wongdontri-Stuper W, Jayanty RKM, Simonaitis R, Heicklen J (1979) The Cl2 photosensitized decomposition of O3: The reactions of ClO and OClO with O3. J Photochem 10:163CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Environmental PhysicsUniversity of HeidelbergHeidelbergGermany
  2. 2.Department of Radio and Space ScienceHörsalsvägen 11Chalmers University of TechnologyGöteborgSweden
  3. 3.Instituto Nicaraguense de Estudios TerritorialesFrente a Policlínica OrientalManaguaNicaragua

Personalised recommendations