Advertisement

Bulletin of Volcanology

, 71:233 | Cite as

Evolution of the late Pleistocene Mojanda–Fuya Fuya volcanic complex (Ecuador), by progressive adakitic involvement in mantle magma sources

  • Claude Robin
  • Jean-Philippe Eissen
  • Pablo Samaniego
  • Hervé Martin
  • Minard Hall
  • Joseph Cotten
Research Article

Abstract

The Mojanda–Fuya Fuya Volcanic Complex consists of two nearby volcanoes, Mojanda and Fuya Fuya. The older one, Mojanda volcano (0.6 to 0.2 Ma), was first constructed by andesites and high-silica andesites forming a large stratovolcano (Lower Mojanda). This edifice was capped by a basaltic andesite and andesitic cone (Upper Mojanda), which collapsed later to form a 3-km-wide summit caldera, after large phreatomagmatic eruptions. The Lower Fuya Fuya edifice was constructed by the extrusion of viscous Si-rich andesitic lavas and dacitic domes, and the emission of a thick sequence of pyroclastic-flow and fallout deposits which include two voluminous rhyolitic layers. An intermediate construction phase at Fuya Fuya is represented by a mainly effusive cone, andesitic in composition (San Bartolo edifice), the construction of which was interrupted by a major sector collapse in the Late Pleistocene. Finally, a complex of thick siliceous lavas and domes was emplaced within the avalanche amphitheatre, forming the Upper Fuya Fuya volcanic centre. This paper shows that the general evolution from an effusive to an explosive eruptive style is related to a progressive adakitic contribution to the magma source. Although all the rocks of the complex are included in the medium-K field of continental arcs, the Fuya Fuya suite (61–75 wt.% SiO2) shows depletion in Y and HREE and high Sr/Y and La/Yb values, compared to the less silicic Mojanda suite (55–66.5 wt.% SiO2). The Mojanda calc-alkaline suite was generated by partial melting of an adakite-metasomatised mantle source that left a residue with 2% garnet, followed by fractional crystallization of dominant plagioclase + pyroxene + olivine at shallow, intra-crustal depths. For Fuya Fuya, geochemical and mineralogical data suggest either (1) partial melting of a similar metasomatised mantle with more garnet in the residue (4%), followed by fractional crystallization involving plagioclase, amphibole and pyroxene, or (2) mixing of mafic mantle-derived magma from the Mojanda suite and slab melts, followed by the same fractional crystallization process.

Keywords

Arc magmatism Volcano evolution Mantle metasomatism Slab melting Adakites Ecuador Andes 

Notes

Acknowledgements

We acknowledge Erwan Bourdon for stimulating discussions. We are also very grateful for the comments on a preliminary version of this paper by Suzanne M. Kay and Nick Petford. We thank Marcel Bohn (CNRS, UMR 6538, Brest, France) for his help in performing the microprobe analyses and Thierry Pilorge (IRD, Bondy, France) for his careful preparation of the thin sections. This research was supported by the French IRD (Institut de Recherche pour le Développement) and the Instituto Geofisico de la Escuela Politecnica Nacional of Quito in the framework of their cooperation agreement. The careful reviews and suggestions of James Luhr and Leonid Danuyshevsky are greatly acknowledged.

References

  1. Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF: a PASCAL program to assess equilibria among Fe–Mg–Mn–Ti oxides, pyroxenes, olivine, and quartz. Comput Geosci 19:1333–1350CrossRefGoogle Scholar
  2. Annen C, Sparks RSJ (2002) Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet Sci Lett 203:937–955CrossRefGoogle Scholar
  3. Atherton MP, etford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362:144–146CrossRefGoogle Scholar
  4. Barberi F, Coltelli M, Ferrara G (1988) Plio–Quaternary volcanism in Ecuador. Geolog Mag 125:1–14CrossRefGoogle Scholar
  5. Barrett TJ, Friedrichsen H (1982) Strontium and oxygen isotopic composition of some basalts from hole 504B, Costa Rica Rift, legs 69 and 70. Earth Planet Sci Lett 60:27–38CrossRefGoogle Scholar
  6. Beate B, Monzier M, Spikings R, Cotton J, Silva J, Boudon E, Eissen J-P (2001) Mio–Pliocene adakite generation related to flat subduction in southern Ecuador: the Quimsacocha volcanic center. Earth Planet Sci Lett 192:499–508CrossRefGoogle Scholar
  7. Bigazzi G, Colteli M, Haadler Neto JC, Osorio AM, Oddone M, Salazar E (1992) Obsidian-bearing flows and pre-Colombian artifacts from the Ecuadorian Andes: first new multidisciplinary data. J South Am Earth Sci 6:21–32CrossRefGoogle Scholar
  8. Bourdon E, Eissen J-P, Monzier M, Robin C, Martin H, Hall ML, Bollinger C, Cotten J (2002a) Adakitic-like lavas from Antisana Volcano (Ecuador): evidence for slab melt metasomatism beneath the North Volcanic Zone. J Petrol 43:199–217CrossRefGoogle Scholar
  9. Bourdon E, Eissen J-P, Gutscher MA, Monzier M, Samaniego P, Robin C, Hall ML, Bollinger C, Cotten J (2002b) Slab melting and slab metasomatism in the Northern Andean Volcanic Zone: adakites and high-Mg andesites from Pichincha volcano (Ecuador). Bull Soc Géol Fr Paris 173:195–206CrossRefGoogle Scholar
  10. Bourdon E, Eissen J-P, Gutscher MA, Monzier M, Hall ML, Cotten J (2003) Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America). Earth Planet Sci Lett 205:123–138CrossRefGoogle Scholar
  11. Bryant JA, Yogodzinski GM, Hall ML, Lewicki JL, Bailey DG (2006) Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic Zone, Ecuador. J Petrol 47:1147–1175CrossRefGoogle Scholar
  12. Clapperton CM (1993) Quaternary geology and geomorphology of South America. Elsevier, Netherlands, p 779Google Scholar
  13. Cotten J, Le Dez A, Bau M, Caroff M, Maury RC, Dulski P, Fourcade S, Bohn M, Brousse R (1995) Origin of anomalous rare-earth element and yttrium enrichments in subaerially exposed basalts: evidence from French Polynesia. Chemical Geol 119:115–138CrossRefGoogle Scholar
  14. Davidson JP, McMillan NJ, Moorbath S, Wörner G, Harmon RS, Lopez-Escobar L (1990) The Nevados de Payachata volcanic region (18°S/69°W, N. Chile) II. Evidence for widespread crustal involvement in Andean magmatism. Contrib Mineral Petrol 105:412–432CrossRefGoogle Scholar
  15. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665CrossRefGoogle Scholar
  16. Defant MJ, Kepezhinskas PK, Drummond MS, Hochstaedter AG (1992) The association of high-Nb basalts and adakites with the subduction of young crust in Kamchatka, Russia. E.O.S. Transactions AGU 73:644Google Scholar
  17. Dosso L, Hanan BB, Bougault H, Schilling JG, Joron JL (1991) Sr–Nd–Pb geochemical morphology between 10° and 17° N on the Mid-Atlantic Ridge: a new MORB isotope signature. Earth Planet Sci Lett 106:29–43CrossRefGoogle Scholar
  18. Drummond MS, Defant MJ, Kepezhinskas PK (1996) Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite magmas. Trans Royal Soc Edinburg Earth Sci 87:205–215Google Scholar
  19. Friedrichsen H (1985) Strontium, oxygen and hydrogen isotopic studies on primary and secondary minerals in basalts from the Costa Rica Rift, DSDP hole 504B, Legs 83. In: Anderson RN, Honnorez J, Becker K et al (eds). Initial Report DSDP 83:289–303Google Scholar
  20. Gill JG (1981) Orogenic andesites and plate tectonics. Springer, New York, p 390Google Scholar
  21. Guillier B, Chatelain JL, Jaillard E, Yepez H, Poupinet G, Fels JF (2001) Seismological evidence on the geometry of the orogenic system in central–northern Ecuador (South America). Geoph Res Let 28:3749–3752CrossRefGoogle Scholar
  22. Gutscher MA, Malavielle J, Lallemand S, Collot JY (1999) Seismotectonics of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet Sci Lett 168:255–270CrossRefGoogle Scholar
  23. Hall ML, Mothes P (1997) El Origen y Edad de la Cangahua Superior, Valle de Tumbaco, Ecuador. In: Zebrowski C, Quantin P, Trujillo G (eds) Suelos volcanicos endurecidos, III Simposio Internacional de Pedologia, Quito, Ecuador, Abstracts volume pp 19–28Google Scholar
  24. Halliday AN, Lee DC, Tommasin S, Davies GR, Paslick CR, Fitton GJ, James DE (1995) Incompatible trace elements in OIB and MORB and source enrichments in the sub oceanic mantle. Earth Planet Sci Lett 133:379–395CrossRefGoogle Scholar
  25. Harmon RS, Barreiro BA, Moorbath S, Hoefs J, Francis PW, Thorpe RS, Déruelle B, McHugh J, Viglino JA (1984) Regional O-, Sr-, and Pb-isotope relationships in late Cenozoic calc–alkaline lavas of the Andean Cordillera. J Geol Soc London 141:803–822CrossRefGoogle Scholar
  26. Hawkesworth CJ (1982) Isotope characteristics of magmas erupted along destructive plate margins. In: Thorpe RS (ed) Andesites: Orogenic andesites and related rocks. John, London, pp 549–571Google Scholar
  27. Hawkesworth CJ, Norry MJ, Roddick JC, Baker PE, Francis PW, Thorpe RS (1979) 143Nd/144Nd, 87Sr/86Sr, and incompatible element variations in calc-alkaline andesites and plateau lavas from South America. Earth Planet Sci Lett 42:45–57CrossRefGoogle Scholar
  28. Hidalgo S, Monzier M, Martin H, Chazot G, Eissen J-P, Cotten J (2007) Adakitic magmas in the Ecuadorian volcanic front: petrogenesis of the Iliniza Volcanic Complex (Ecuador). J Volcanol Geothermal Res 159:366–392, doi: 10.1016/j.jvolgeores.2006.07.007 CrossRefGoogle Scholar
  29. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489CrossRefGoogle Scholar
  30. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462CrossRefGoogle Scholar
  31. Jaillard E, Benítez S, Mascle G (1997) Les déformations de la zone d’avant arc sud-équatorienne en relation avec l’évolution géodynamique. Bull Soc Géol Fr 168:403–412Google Scholar
  32. James DE (1982) A combined O, Sr, Nd, and Pb isotopic and trace element study of crustal contamination in central Andean lavas, I. Local geochemical variations. Earth Planet Sci Lett 57:47–62CrossRefGoogle Scholar
  33. Johnson MC, Rutherford MJ (1989) Experimentally determined conditions in the Fish Canyon Tuff, Colorado, magma chamber. J Petrol 30:711–737Google Scholar
  34. Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189CrossRefGoogle Scholar
  35. Kay SM, Maksaev V, Moscoso R, Mrodozis C, Nasi C (1987) Probing the evolving Andean lithosphere: mid-late Tertiary magmatism in Chile (29°–30° 30′ S) over the modern zone of subhorizontal subduction. J Geoph Res 92:6173–6189CrossRefGoogle Scholar
  36. Kepezhinskas PK, Defant MJ, Dummond MS (1996) Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geoch Cosmo Acta 60:1217–1229CrossRefGoogle Scholar
  37. Kerr A, Aspen J, Tarney J, Pilatasig L (2002) The nature and provenance of accreted oceanic terranes in western Ecuador. Geochemical and tectonic constraints. J Geol Soc London 159:577–594CrossRefGoogle Scholar
  38. Litherland M, Aspden JA, Jemielita RA (1994) The metamorphic belts of Ecuador. British Geological Survey, Overseas Memoir 11. British Geological Survey, Keyworth, p 147Google Scholar
  39. Martin H (1986) Effect of steeper Archean geothermal gradient on geochemistry of subduction zone magmas. Geology 14:753–756CrossRefGoogle Scholar
  40. Martin H (1987) Petrogenesis of Archean trondhjemites, tonalites and granodiorites from Eastern Finland: major and trace elements geochemistry. J Petrol 28:921–953Google Scholar
  41. Martin H (1999) Adakitic magmas: modern analogues of Archean granitoids. Lithos 46:411–429CrossRefGoogle Scholar
  42. Maury RC, Sajona F, Pubellier M, Bellon H, Defant M (1996) Fusion de la croûte océanique dans les zones de subduction/collision récentes: l’exemple de Mindanao (Philippines). Bull Soc Géol Fr 167:579–595Google Scholar
  43. McCourt WJ, Duque P, Pilatasig LF, Villagómez R (1998) Mapa geológico de la Cordillera Occidental del Ecuador entre 1°–2° S, escala 1: 200.000. CODIGEM-Min. Energ. Min.-BGS Publicacions, QuitoGoogle Scholar
  44. Monzier M, Robin C, Eissen JP, Cotten J (1997a) Geochemistry vs. seismo-tectonics along the volcanic New Hebrides Central Chain (Southwest Pacific). J Volcanol Geotherm Res 78:1–29CrossRefGoogle Scholar
  45. Monzier M, Hall ML, Cotten J, Robin C, Mothes P, Eissen JP, Samaniego P (1997b) Les adakites d’Equateur: modèle préliminaire. Comptes Rendus Acad Sci Paris 324:545–552Google Scholar
  46. Monzier M, Robin C, Samaniego P, Hall ML, Cotten J, Mothes P, Arnaud N (1999) Sangay volcano, Ecuador: structural development, present activity and petrology. J Volcanol Geotherm Res 90:49–79CrossRefGoogle Scholar
  47. Monzier M, Bourdon E, Samaniego P, Eissen JP, Robin C, Martin H, Cotten J (2003) Slab melting and Nb-enriched mantle beneath NVZ. EUG-AGU-EGS, Nice, France, April 2003 Abstract EAE03-A-02087Google Scholar
  48. Peacock SM (1996) Thermal and petrologic structure of subduction zones. In: Bebout GE, Scholl DW, Kirby SH, Platt J (eds) AGU Geoph Monograph Subduction: top to bottom, 96:1–17Google Scholar
  49. Peacock SM, Rushner T, Thompson AB (1994) Partial melting of subducting oceanic crust. Earth Planetary Sci Lett 121:227–224CrossRefGoogle Scholar
  50. Petford N, Atherton M (1996) Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J Petrol 67:1491–1521CrossRefGoogle Scholar
  51. Prévot R, Chatelain JL, Guillier B, Yepes H (1996) Tomographie des Andes équatoriennes: évidence d’une continuité des Andes Centrales. Comptes Rendus Acad Sci Paris 323:833–840Google Scholar
  52. Prouteau G (1999) Contribution des produits de fusion de la croûte océanique subductée au magmatisme d’arc: exemple du Sud-Est asiatique et approche expérimentale. Thèse d’Université, Université de Bretagne Occidentale, Brest, France, p 264Google Scholar
  53. Prouteau G, Scaillet B (2003) Experimental constraints on the origin of the 1991 Pinatubo Dacite. J Petrol 44:2203–2241CrossRefGoogle Scholar
  54. Prouteau G, Maury RC, Rangin C, Suparka E, Bellon H, Pubellier M, Cotten J (1996) Les adakites miocènes du NW de Bornéo, témoins de la fermeture de la proto-mer de Chine. Comptes Rendus Acad Sci Paris 323:925–932Google Scholar
  55. Prouteau G, Scaillet B, Pichavant M, Maury RC (1999) Fluid-present melting of oceanic crust in subduction zones. Geology 27:1111–1114CrossRefGoogle Scholar
  56. Prouteau G, Maury RC, Sajona FG, Cotten J, Joron JL (2000) Behavior of Nb, Ta and other HFSE in adakites and related lavas from the Philippines. The Island Arc 9:487–498CrossRefGoogle Scholar
  57. Prouteau G, Scaillet B, Pichavant M, Maury RC (2001) Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410:197–200CrossRefGoogle Scholar
  58. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J Petrol 36:891–931Google Scholar
  59. Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precamb Res 51:1–25CrossRefGoogle Scholar
  60. Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356CrossRefGoogle Scholar
  61. Reynaud C, Jaillard É, Lapierre H, Mascle G (1999) Oceanic plateau and island arcs of SW Ecuador: their place in the geodynamic evolution of northwestern South America. Tectonophysics 307:235–254CrossRefGoogle Scholar
  62. Robin C, Hall ML, Jimenez M, Monzier M, Escobar P (1997) Mojanda volcanic complex (Ecuador): development of two adjacent contemporaneous volcanoes with contrasting eruptive styles and magmatic suites. J South Amer Earth Sci 10:345–359CrossRefGoogle Scholar
  63. Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions. J Geophys Res 98:19667–19685CrossRefGoogle Scholar
  64. Sajona FG, Maury RC, Bellon H, Cotten J, Defant MJ, Pubellier M (1993) Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology 21:1007–1010CrossRefGoogle Scholar
  65. Sajona FG, Maury RC, Bellon H, Cotten J, Defant MJ (1996) High field strength element enrichment of Pliocene–Pleistocene Island arc basalts, Zamboanga Peninsula, western Mindanao (Philippines). J Petrol 37:693–726CrossRefGoogle Scholar
  66. Sajona FG, Maury RC, Prouteau G, Cotten J, Schiano P, Bellon H, Fontaine L (2000) Slab melt as metasomatic agent in island arc magma mantle sources, Negros and Bataan (Philippines). The Island Arc 9:472–486CrossRefGoogle Scholar
  67. Samaniego P, Martin H, Robin C, Monzier M (2002) Transition from calc-alkalic to adakitic magmatism at Cayambe volcano, Ecuador: insight into slab melts and mantle wedge interactions. Geology 30:967–970CrossRefGoogle Scholar
  68. Samaniego P, Martin H, Monzier M, Robin C, Fornari M, Eissen J-P, Cotten J (2005) Temporal evolution of magmatism at Northern Volcanic Zone of the Andes: the geology and petrology of Cayambe volcanic complex (Ecuador). J Petrol 45:2225–2252CrossRefGoogle Scholar
  69. Schiano P, Clocchiatti R, Shimizu N, Maury RC, Jochum KP, Hoffman AW (1995) Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature 377:595–600CrossRefGoogle Scholar
  70. Shaw DM (1970) Trace elements fractionation during anatexis. Geoch Cosmo Acta 34:237–243CrossRefGoogle Scholar
  71. Stern CR, Kilian R (1996) Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib Mineral Petrol 123:263–281CrossRefGoogle Scholar
  72. Stern CR, Futa K, Muehlenbachs K (1984) Isotope and trace element data for orogenic andesites from the austral Andes. In: Harmon RS, Barreis BA (eds) Andean magmatism. Shiva, Cheshire, pp 31–46Google Scholar
  73. Stormer JC, Nicholls J (1978) Xlfrac: a program for the interactive testing of magmatic differentiation models. Computers Geosci 4:143–159CrossRefGoogle Scholar
  74. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD, Norry JM (eds) Magmatism in oceanic basins. Geol Soc London Spec Pub 42:313–345Google Scholar
  75. Tatsumi Y, Eggins S (1995) Subduction zone magmatism. Blackwell, Cambridge, p 211Google Scholar
  76. Tindle AG, Webb PC (1994) Probe-Amph: a spreadsheet program to classify microprobe-derived amphibole analyses. Comput Geosci 20:1201–1228CrossRefGoogle Scholar
  77. Weber MBI, Tarney J, Kempton PD, Kent RW (2002) Crustal make-up of the northern Andes: evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics 345:49–82CrossRefGoogle Scholar
  78. White WM, McBirney AR, Duncan RA (1993) Petrology and geochemistry of the Galapagos islands: portrait of a pathological mantle plume. J Geoph Res 98:19533–19563CrossRefGoogle Scholar
  79. Wohletz KH (1983) Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies. J Volcanol Geoth Res 17:31–63CrossRefGoogle Scholar
  80. Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV, Kay SM (1995) Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and process in the mantle wedge. Geol Soc Amer Bull 107:505–519CrossRefGoogle Scholar
  81. Yogodzinski GM, Lees JM, Churikova TG, Dorendorf F, Wöerner G, Volynets ON (2001) Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature 409:500–504CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Claude Robin
    • 1
    • 2
  • Jean-Philippe Eissen
    • 1
  • Pablo Samaniego
    • 2
  • Hervé Martin
    • 3
  • Minard Hall
    • 2
  • Joseph Cotten
    • 4
  1. 1.IRD, UMR 163Laboratoire Magmas et Volcans (UBP-CNRS-IRD)Clermont-FerrandFrance
  2. 2.Instituto GeofisicoEscuela Politecnica NacionalQuitoEcuador
  3. 3.Université Blaise Pascal, Laboratoire Magmas et Volcans (CNRS-UMR 6524)Clermont-FerrandFrance
  4. 4.Université de Bretagne Occidentale, Unité Domaines Océaniques (CNRS-UMR 6538)BrestFrance

Personalised recommendations