Advertisement

Bulletin of Volcanology

, Volume 70, Issue 8, pp 977–997 | Cite as

Paleomagnetism, magnetic fabric, and 40Ar/39Ar dating of Pliocene and Quaternary ignimbrites in the Arequipa area, southern Peru

  • Perrine Paquereau-LebtiEmail author
  • Michel Fornari
  • Pierrick Roperch
  • Jean-Claude Thouret
  • Orlando Macedo
Research Article

Abstract

40Ar/39Ar ages and paleomagnetic correlations using characteristic remanent magnetizations (ChRM) show that two main ignimbrite sheets were deposited at 4.86 ± 0.07 Ma (La Joya Ignimbrite: LJI) and at 1.63 ± 0.07 Ma (Arequipa Airport Ignimbrite: AAI) in the Arequipa area, southern Peru. The AAI is a 20–100 m-thick ignimbrite that fills in the Arequipa depression to the west of the city of Arequipa. The AAI is made up of two cooling units: an underlying white unit and an overlying weakly consolidated pink unit. Radiometric data provide the same age for the two units. As both units record exactly the same well-defined paleomagnetic direction (16 sites in the white unit of AAI: Dec = 173.7; Inc = 31.2; α95 = 0.7; k = 2749; and 10 sites in the pink unit of AAI; Dec = 173.6; Inc = 30.3; α95 = 1.2; k = 1634), showing no evidence of secular variation, the time gap between emplacement of the two units is unlikely to exceed a few years. The >50 m thick well-consolidated white underlying unit of the Arequipa airport ignimbrite provides a very specific magnetic zonation with low magnetic susceptibilities, high coercivities and unblocking temperatures of NRM above 580°C indicating a Ti-poor titanohematite signature. The Anisotropy of Magnetic Susceptibility (AMS) is strongly enhanced in this layer with anisotropy values up to 1.25. The fabric delineated by AMS was not recognized neither in the field nor in thin sections, because most of the AAI consists in a massive and isotrope deposit with no visible textural fabric. Pumices deformation due to welding is only observed at the base of the thickest sections. AMS within the AAI ignimbrite show a very well defined pattern of apparent imbrications correlated to the paleotopography, with planes of foliation and lineation dipping often at more than 20° toward the expected vent, buried beneath the Nevado Chachani volcanic complex. In contrast with the relatively small extent of the thick AAI, the La Joya ignimbrite covers large areas from the Altipano down the Piedmont. Ti-poor titanomagnetites are the dominant magnetic carriers and AMS values are generally lower than 1.05. Magnetic foliations are sub horizontal and lineations directions are scattered in the LJI. The AMS fabrics are probably controlled by post-depositional compaction and welding of the deposit rather than transport dynamics.

Keywords

Ignimbrite Paleomagnetism 40Ar/39Ar age AMS Magnetic mineralogy Emplacement mechanisms Peru 

Notes

Acknowledgments

Fieldworks in Peru and data acquisition in the paleomagnetic laboratory in Santiago were supported by IRD through a grant to the first author. Discussions in the field with F. Legros were very helpful for the interpretation of the AMS data. We thank G. Wörner, A. Grunder A. Chauvin and O. Roche for their comments on a preliminary version of the manuscript, as well as the Associate Editor R. Cioni and three anonymous referees. SEM observations were made at LMTG.

Supplementary material

445_2007_181_MOESM1_ESM.doc (76 kb)
ESM 1 (DOC 76.5 KB)

References

  1. Baer EM, Fisher RV, Fuller M, Valentine G (1997) Turbulent transport and deposition of the Ito pyroclastic flow: determinations using anisotropy of magnetic susceptibility. J Geophys Res 102:22565–22586CrossRefGoogle Scholar
  2. Barker DS (1996) Sillar Ocioso. Bull Volcanol 58:317–318Google Scholar
  3. Branney MJ, Kokelaar P (1992) A reappraisal of ignimbrite emplacement, progressive aggradation and changes from particulate to non-particulate flow during emplacement of high grade ignimbrite. Bull Volcanol 54:504–520CrossRefGoogle Scholar
  4. Branney MJ, Kokelaar P (1994) Reply to Wolff and Turbeville's Comment on “A reappraisal of ignimbrite emplacement: progressive aggradation and particulate to non-particulate flow transitions during emplacement of high-grade ignimbrite” by MJ Branney and P Kokelaar. Bull Volcanol 56:138–143Google Scholar
  5. Branney MJ, Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc London Mem 27:51–118Google Scholar
  6. Cagnoli B, Tarling DH (1997) The reliability of anisotropy of magnetic susceptibility (AMS) data as flow direction indicators in friable base surge and ignimbrite deposits: Italian examples. J Volcanol Geotherm Res 75:309–320. DOI  10.1016/S0377-0273(96)00038-8
  7. Carey S (1991) Transport and deposition of tephra by pyroclastic flows and surges. In: Fisher RV, Smith GA (eds) Sedimentation in volcanic settings. SEPM Spec Pub 45:39–57Google Scholar
  8. Cioni R, Gurioli L, Lanza R, Zanella E (2004) Temperatures of the A.D. 79 pyroclastic density current deposits (Vesuvius, Italy). J Geophys Res 109:B02207. DOI  10.1029/2002JB002251
  9. Dade WB (2003) The emplacement of low-aspect ratio ignimbrites by turbulent parent flows. J Geophys Res 108:2211. DOI  101029/2001JB001010 Google Scholar
  10. Ellwood BB (1982) Estimate of flow direction for calc-alkaline welded tuffs and paleomagnetic data reliability from anisotropy of magnetic susceptibility measurements: central San Juan Mountains, southwest Colorado. Earth Planet Sci Lett 59:303–314CrossRefGoogle Scholar
  11. Fenner CN (1948) Incandescent tuff flows in southern Peru. Geol Soc Am Bull 59:879–893CrossRefGoogle Scholar
  12. Fisher RA (1953) Dispersion on a sphere. Proc R Soc London A 217:275–305Google Scholar
  13. Gattacceca J, Rochette P (2002) Pseudopaleosecular variation due to remanence anisotropy in a pyroclastic flow succession. Geophys Res Lett 29:1286 DOI  10.1029/2002GL014697
  14. Guevara C (1969) Geologia del cuandrangulo de Characato. Servicio de Geologia y Mineria, Lima, Peru, Bol 23Google Scholar
  15. Hillhouse JW, Wells RE (1991) Magnetic fabric, flow directions, and source area of the lower Miocene Peach Springs Tuff in Arizona, California, and Nevada. J Geophys Res 96:12443–12460CrossRefGoogle Scholar
  16. Jelinek V (1978) Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geoph Geod 22:50–62CrossRefGoogle Scholar
  17. Jenks WF, Goldish SX (1956) Rhyolitic tuff flows in southern Peru. J Geol 64:156–172CrossRefGoogle Scholar
  18. Kirschvink JL (1980) The last-squares line and plane and the analysis of paleomagnetic data. Geophys J R Astr Soc 62:699–718Google Scholar
  19. Le Pennec JL, Chen Y, Diot H, Froger JL, Gourgaud A (1998) Interpretation of anisotropy of magnetic susceptibility fabric of ignimbrites in terms of kinematic and sedimentological mechanisms: an Anatolian case-study. Earth Planet Sci Lett 157:105–127. DOI  10.1016/S0012-821X(97)00215-X
  20. McClelland EA, Druitt TH (1989) Palaeomagnetic estimates of emplacement temperatures of pyroclastic deposits on Santorini, Greece. Bull Volcanol 51:16–27CrossRefGoogle Scholar
  21. McDonald WD, Palmer HC (1990) Flow directions in ash flow tuffs: A comparison of geological and magnetic susceptibility measurements. Tshirege member (upper Bandelier Tuff) Valles caldera. New Mexico, USA. Bull Volcanol 53:45–59CrossRefGoogle Scholar
  22. McIntosh WC (1991) Evaluation of paleomagnetism as a correlation criterion for Mogollon-Datil ignimbrites, southwestern New Mexico. J Geophys Res 96:13459–13483CrossRefGoogle Scholar
  23. Ort MH, Orsi G, Pappalardo L (2003) Anisotropy of magnetic susceptibility studies of depositional processes in the Campanian Ignimbrite, Italy. Bull Volcanol 65:55–72. DOI  10.1007/s00445-002-0241-2 Google Scholar
  24. Palmer HC, MacDonald WD, Gromme CSI, Ellwood BB (1996) Magnetic properties and emplacement of the Bishop Tuff, California. Bull Volcanol 58:101–116CrossRefGoogle Scholar
  25. Palmer HC, MacDonald WD (1999) Anisotropy of magnetic susceptibility in relation to source vents of ignimbrites: empirical observations. Tectonophys 307:207–218. DOI  10.1016/S0040-1951(99)00126-2 Google Scholar
  26. Palmer HC, McDonald WD (2002) The Northeast Nevada Volcanic Field: Magnetic properties and source implications. J Geophys Res 107:2298. DOI  10.1029/2001JB000690 Google Scholar
  27. Paquereau-Lebti P, Thouret JC, Wörner G, Fornari M (2006) Neogene and Quaternary ignimbrites in the area of Arequipa, Southern Peru: Stratigraphical and petrological correlations. J Volcanol Geotherm Res 154:251–275. DOI  10.1016/j.jvolgeores.2006.02.014 Google Scholar
  28. Piper JDA, Gürsoy H, Tatar O (2002) Paleomagnetism and magnetic properties of the Cappadocian ignimbrite succession, central Turkey and Neogene tectonics of the Anatolian collage. J Volcanol Geotherm Res 117:237–262. DOI  10.1016/S0377-0273(02)00221-4
  29. Porreca M, Mattei M, Giordano G, De Rita D, Funiciello R (2003) Magnetic fabric and implications for pyroclastic flow and lahar emplacement, Albano maar, Italy. J Geophys Res 108:2264. DOI  10.1029/2002JB002102 Google Scholar
  30. Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties, in 40Ar/39Ar dating. Chem Geol 145:117–152CrossRefGoogle Scholar
  31. Rosenbaum JG (1986) Paleomagnetic directional dispersion produced by plastic deformation in a thick Miocene welded tuff, southern Nevada: implications for welding temperatures. J Geophys Res 91:12817–12834CrossRefGoogle Scholar
  32. Rosenbaum JG (1993) Magnetic grain-size variations through an ash-flow sheet: influence on magnetic properties and implications for cooling history. J Geophys Res 98:11715–11727CrossRefGoogle Scholar
  33. Saito T, Ishikawa N, Kamata H (2003) Identification of magnetic minerals carrying NRM in pyroclastic-flow deposits. J Volcanol Geotherm Res 126:127–142. DOI  10.1016/S0377-0273(03)00132-X Google Scholar
  34. Seaman SJ, McIntosh WC, Geissman JW, Williams ML, Elston WE (1991) Magnetic fabrics of the Bloodgood Canyon and Shelley Peak Tuffs, southwestern New Mexico: implications for emplacement and alteration processes. Bull Volcanol 53:460–476CrossRefGoogle Scholar
  35. Sparks RSJ (1976) Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology 23:147–188CrossRefGoogle Scholar
  36. Sparks RSJ, Wilson L, Hulme G (1978) Theoretical modelling of the generation, movement and emplacement of pyroclastic flows by column collapse. J Geophys Res 83:1727–1739CrossRefGoogle Scholar
  37. Steiger, RH, Jager E (1977) Subcommission on geochronology: convention of the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  38. Streck MJ, Grunder AL (1995) Crystallization and welding variations in a widespread ignimbrite sheet; the Rattlesnake Tuff, eastern Oregon, USA. Bull Volcanol 57:151–169. DOI  10.1007/s004450050086 Google Scholar
  39. Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, LondonGoogle Scholar
  40. Valentine GA (1987) Stratified flow in pyroclastic surges. Bull Volcanol 49:616–630CrossRefGoogle Scholar
  41. Vargas L (1970) Geologia del cuandrangulo de Arequipa. Servicio de Geologia y Mineria, Lima, Peru, Boletin 24Google Scholar
  42. Vatin-Pérignon N, Poupeau G, Oliver RA, Lavenu A, Labrin E, Keller F, Bellot-Gurlet L (1996) Trace and rare-earth element characteristics of acidic tuffs from Southern Peru and Northern Bolivia and fission-track age for the Sillar of Arequipa. J South Am Earth Sci 9:91–109. DOI  10.1016/0895-9811(96)00030-2 Google Scholar
  43. Wolff JA, Turbeville BN (1994) Comment on ‘A reappraisal of ignimbrite emplacement: progressive aggradation and particulate to non-particulate flow transitions during emplacement of high-grade ignimbrite’ by Branney MJ and Kokelaar P. Bull Volcanol 56:134–137Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Perrine Paquereau-Lebti
    • 1
    Email author
  • Michel Fornari
    • 2
  • Pierrick Roperch
    • 3
  • Jean-Claude Thouret
    • 4
  • Orlando Macedo
    • 5
  1. 1.Department of GeosciencesOregon State UniversityCorvallisUSA
  2. 2.IRD, UMR Géosciences AzurUniversité de Nice-Sophia AntipolisNice cedex 2France
  3. 3.IRD, LMTG & Géosciences RennesRennes cedexFrance
  4. 4.Laboratoire Magmas et VolcansUniversité Blaise Pascal, CNRS, OPGC et IRDClermont-Ferrand, cedexFrance
  5. 5.Instituto Geofisico del Perú, Oficina Regional de ArequipaArequipaPeru

Personalised recommendations