Bulletin of Volcanology

, Volume 70, Issue 4, pp 435–454 | Cite as

Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes

  • Charles R. SternEmail author
Research Article


For regionally widespread Holocene tephra layers in southernmost Patagonia, correlations based on both chemical and chronological data indicate their derivation from five large-volume (>1 km3) explosive eruptions of four different volcanoes in the southernmost Andes. Bulk-tephra and tephra-glass major and trace-element chemistry and Sr isotopic ratios unambiguously distinguish different source volcanoes, and imply that two of the regionally widespread tephra (MB1 and MB2) were derived from Mt. Burney (52°S), one (R1) from Reclus (51°S), one (A1) from Aguilera (50°S) and one (H1) from Hudson volcano (46°S). The H1 tephra derived from the Hudson volcano, which is located at the southern end of the Andean Southern Volcanic Zone (SVZ; 33–46°S), contains distinctive greenish andesitic glass with FeO > 4.5 wt.% and TiO2 > 1.2 wt.%. In contrast, rhyolitic glass in tephra derived from the eruptions of Mt. Burney, Reclus and Aguilera volcanoes, which are located in the Andean Austral Volcanic Zone (AVZ; 49–55°S), is clear and transparent and has significantly lower FeO and TiO2. Tephra derived from these three AVZ volcanoes all contain plagioclase, orthopyroxene, minor clinopyroxene and amphibole. Biotite occurs only in the Aguilera A1 tephra, which also has the highest bulk-tephra and tephra-glass K2O and Rb contents. Averages of new and published 14C ages determined on organic material in soil and sediment samples above and below these tephra constrain the uncalibrated 14C age of the R1 eruption of Reclus volcano to 12,685 ± 260 years BP, the MB1 and MB2 eruptions of Mt. Burney to 8,425 ± 500 and 3,830 ± 390 years BP, the Hudson H1 eruption to 6,850 ± 160 years BP, and the A1 eruption of Aguilera volcano to 3,000 ± 100 years BP. The volume of the largest of these eruptions, H1 of the Hudson volcano, is estimated as >18 km3. The volume of the Reclus R1 eruption is estimated at >10 km3, the Aguilera A1 eruption at between 4 and 9 km3, and the younger Mt. Burney MB2 eruption at ≥2.8 km3. The volume of the older MB1 Mt. Burney eruption is the least well constrained, but must have been larger than the younger MB2 eruption. The data indicate that the frequency of explosive activity of volcanic centers in the AVZ is lower than in the southern SVZ.


Tephra Tephrochronology Patagonia Explosive volcanism Holocene South America Southern Andes 



This work was supported by National Geographic Society grants NGS 4238-89 and 4889-92 and FONDECYT-Chile projects 1-94-0129 and 1-96-0186. Eric Leonard, Alexandra Skewes, Kyoto Futa, Michael Dobbs, Pedro Cardenas and Jose Antonio Naranjo collaborated in the fieldwork. Rolf Kilian, Vera Markgraf, Patricio Moreno and Rodrigo Villa Martínez (supported by Fondecyt-Chile grant 1040204), Stephen Porter, Calvin Heusser, Cristian Favier Debois, Luis Borrero, Nora Franco and Juan Bautista Belardi provided other tephra samples and invaluable information from outcrops, bog and lake sediment cores, and archaeological excavations. Dan Mitchell assisted with the preparation of the figures. Rolf Kilian and Jorge Clavero provided helpful reviews.


  1. Auer V (1974) The isorhythmicity subsequent to the Fuego-Patagonian and Fennoscandian ocean level transgression and regressions of the latest glaciation. Ann Acad Sci Fenn A 3 Geol Geogr 115:1–188Google Scholar
  2. Clapperton CM, Sugden DE, Kaufman DS, McCulloch RD (1995) The last glaciation in central Magellan Strait, southernmost Chile. Quat Res 44:133–148CrossRefGoogle Scholar
  3. Favier Dubois CM, Borrero LA (1997) Geoarchaeological perspectives on late Pleistocene faunas from Ultima Esperanza sound, Magallanes, Chile. Antropologie 35:207–213Google Scholar
  4. Fierstein J, Nathenson M (1992) Another look at calculations of fallout tephra volumes. Bull Volcanol 54:156–167CrossRefGoogle Scholar
  5. Futa K, Stern CR (1988) Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the southern Andes. Earth Planet Sci Lett 88:253–262CrossRefGoogle Scholar
  6. Haberzettl T, Corbella H, Fey M, Janssen S, Lucke A, Mayr C, Ohlendorf C, Schabitz F, Schleser GH, Wille M, Wulf S, Zolitschka B (2007) Wet–dry cycles in southern Patagonia—chronology, sedimentology and geochemistry of a lacustrine sediment record from Laguna Potrok Aike (Argentina). Holocene (in press)Google Scholar
  7. Heusser CJ (1995) Three late Quaternary pollen diagrams from Southern Patagonia and their palaeoecological implications. Palaeageography, Palaeoclimatology. Palaeoecology 118:1–24CrossRefGoogle Scholar
  8. Heusser CJ, Heusser LE, Hausser A (1989) A 12,000 yr B.P. tephra layer at Bahia Inutile (Tierra del Fuego, Chile). An Inst Patagon 19:39–49Google Scholar
  9. Heusser CJ, Heusser LE, Lowell TV, Moreira A, Moreira S (2000) Deglacial palaeoclimate at Puerto del Hambre, subantarctic Patagonia, Chile. J Quat Sci 15:101–114CrossRefGoogle Scholar
  10. Hildreth W, Drake RE (1992) Volcán Quizapu, Chilean Andes. Bull Volcanol 54:93–125CrossRefGoogle Scholar
  11. Kilian R, Hohner M, Beister H, Wallrabe-Adams HJ, Stern CR (2003) Holocene peat and lake sediment tephra record from the southernmost Chilean Andes (53–55°S). Rev Geol Chile 30:23–37Google Scholar
  12. Kilian R, Beister H, Behrmann J, Baeza O, Fesq-Martin M, Hohner M, Schimpf D, Friedmann A, Mangini A (2006) Millennium-scale volcanic impact on a superhumid and pristine ecosystem. Geology 34:609–612CrossRefGoogle Scholar
  13. Kilian R, Baeza O, Steinke T, Arevalo M, Rios C, Schneider C (2007a) Late Pleistocene to Holocene marine transgression and thermohaline control on sediment transport in the western Magallanes fjord system of Chile (53°S). Quat Int 161:90–107CrossRefGoogle Scholar
  14. Kilian R, Schneider C, Kach J, Fesq-Martin M, Biester H, Casassa G, Arevalo M, Wendt G, Baeza O, Behrmann J (2007b) Palaeocological constraints on late Glacial and Holocene ice retreat in the southern Andes. Glob Planet Change DOI  10.1016/j.gloplacha.2006.11.34
  15. López-Escobar L, Killian R, Kempton P, Tagiri M (1993) Petrography and geochemistry of Quaternary rocks from the Southern Volcanic Zone between 41°30′ and 46°00′S, Chile. Rev Geol Chile 20:35–55Google Scholar
  16. Marden CJ (1997) Late-glacial fluctuations of south Patagonian ice-field, Torres del Paine National park, southern Chile. Quat Int 38/39:61–68CrossRefGoogle Scholar
  17. Marden CJ, Clapperton CM (1995) Fluctuations of the South Patagonian ice-field during the last glaciation and the Holocene. J Quat Sci 10:197–210CrossRefGoogle Scholar
  18. Markgraf V (1980) New data on the Late and Postglacial vegetational history of “La Mission” Tierra del Fuego, Argentina. Proceedings of the IV International Palynological Congress, Lucknow, India (1976–77) 3:68–74Google Scholar
  19. Markgraf V, Bradbury JP, Schwalb A, Burns SJ, Stern CR, Ariztegui D, Gilli A, Anselmetti FS, Stine S, Maidana N (2003) Holocene palaeoclimates of southern Patagonioa: limnological and environmental history of Lago Cardiel, Argentina. Holocene 13:597–607CrossRefGoogle Scholar
  20. Martínez RV, Moreno PI (2007) Pollen evidence for variations in the southern margin of the westerly winds in SW Patagonia over the last 12,600 years. Quat Res (in press)Google Scholar
  21. Martinic M (1988) Actividad volcanic historica en la region de Magallanes. Rev Geol Chile 15:181–186Google Scholar
  22. Massone M (1987) Los cazadores paleoindios de Tres Arroyos (Tierra del Fuego). An Inst Patagon 17:47–60Google Scholar
  23. Massone M (1989) Investigaciones arqueologicas en la laguna Thomas Gold. An Inst Patagon 19:87–99Google Scholar
  24. McCulloch RD (1994) Palaeoenvironmental evidence for the Late Wisconsin/Holocene transition in the Strait of Magellan, southern Patagonia. Ph.D. thesis, University of AberdeenGoogle Scholar
  25. McCulloch RD, Bentley MJ (1998) Late glaciation ice advances in the Strait of Magellan, southern Patagonia. Quat Sci Rev 17:775–787CrossRefGoogle Scholar
  26. McCulloch RD, Davies SJ (2001) Late-glacial and Holocene palaeoenvironmental changes in the central Strait of Magellan, southern Patagonia. Palaeageography, Palaeoclimatology, Palaeoecology 173:143–173CrossRefGoogle Scholar
  27. McCulloch RD, Bentley MJ, Tipping RM, Clapperton CM (2005a) Evidence for late-glacial ice dammed lakes in the central Strait of Magellan and Bahia Inutile, southernmost South America. Geogr Ann Ser A 87A:355–362Google Scholar
  28. McCulloch RD, Fogwill CJ, Sugden DE, Bentley MJ, Kubik PW (2005b) Chronology of the last glaciation in central Strait of Magellan and Bahia Inutil, southernmost South America. Geogr Ann Ser A 87A:289–312CrossRefGoogle Scholar
  29. Mercer JH (1970) Variations of some Patagonian glaciers since the late glacial. Am J Sci 269:1–25CrossRefGoogle Scholar
  30. Naranjo JA, Stern CR (1998) Holocene explosive activity of Hudson Volcano, southern Andes. Bull Volcanol 59:291–306CrossRefGoogle Scholar
  31. Naranjo JA, Stern CR (2004) Holocene tephrochronology of the southernmost part (42°30′–45°S) of the Andean Southern Volcanic Zone. Rev Geol Chile 31:225–240Google Scholar
  32. Naranjo JA, Moreno H, Banks NG (1993) La erupción del volcán Hudson 1991 (46°S), Región de Aisén, Chile. Bol Serv Nac Geol Min Chile 44:50Google Scholar
  33. Orihashi Y, Naranjo JA, Motoki A, Sumino H, Hirata D, Anma R, Nagao K (2004) Quaternary volcanic activity of Hudson and Lautaro volcanoes, Chilean Patagonia: new constraints from K–Ar ages. Rev Geol Chile 31:207–224Google Scholar
  34. Orquera L, Piana E (1987) Composicion tipolgica y datos tecnomorfologicos de los distintos conjuntos arqueologicos del sitio Tunel I (Tierra del Fuego). Relac Soc Argent Antropol 17:201–239Google Scholar
  35. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15CrossRefGoogle Scholar
  36. Sahlstein TG (1932) Petrologie der postglazialen vulkanischen Aschen des Feuerlandes. Geogr Zb 5:1–35Google Scholar
  37. Salmi M (1941) Die postglazialen eruptionsschicten Patagoniens und des feuerlandes. Ann Acad Sci Fenn A 3 Geol Geogr 2:1–115Google Scholar
  38. Sarna-Wojcicki AM, Shipley S, Waitt RB et al (1981) Areal distribution, thickness, mass, volume, and grain size of air-fall ash from the six major eruptions of 1980. USGS Special Paper 1250:577–600Google Scholar
  39. Scasso RA, Corbella H, Tiberi P (1994) Sedimentological analysis of the tephra from the 12–15 August 1991 eruption of the Hudson volcano. Bull Volcanol 56:121–132Google Scholar
  40. Stern CR (1990) The tephrochronology of southernmost Patagonia. Natl Geogr Res 6:110–126Google Scholar
  41. Stern CR (1991) Mid-Holocene tephra on Tierra del Fuego (54°S) derived from the Hudson volcano (46°S): evidence for a large explosive eruption. Rev Geol Chile 18:139–146Google Scholar
  42. Stern CR (1992) Tefrocronologia de Magallanes: nuevos datos e implicaciones. An Inst Patagon 21:129–141Google Scholar
  43. Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31:161–206CrossRefGoogle Scholar
  44. Stern CR, Kilian R (1996) Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib Mineral Petrol 123:263–281CrossRefGoogle Scholar
  45. Stern CR, Futa K, Muehlenbachs K (1984) Isotope and trace element data for orogenic andersites in the Austral Andes. In: Harmon RS, Barreirro BA (eds) Andean magmatism: chemical and isotopic constraints. Shiva Press, Cheshire, England, pp 31–46Google Scholar
  46. Stern CR, Moreno H, Lopez-Escobar L, Clavero JE, Lara LE, Naranjo JA, Parada MA, Skewes MA (2007) Chilean volcanoes. In: Moreno T, Gibbons W (eds) The geology of Chile. Geological Society of London, chap. 5, pp 149–180Google Scholar
  47. Strelin JA, Malagnino EC (2000) Late-glacial history of Lago Argentino, Argentina, and age of the Puerto Bandera Moraines. Quat Res 54:339–347CrossRefGoogle Scholar
  48. Stuiver M, Reimer PJ, Reimer R (2006) CALIB 5.0.2 at
  49. Uribe P (1982) Deglaciacion en el sector central del Estrecho de Magallanes; consideraciones geomorfologicas y cronologicas. An Inst Patagon 13:103–111Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Geological SciencesUniversity of ColoradoBoulderUSA

Personalised recommendations