Bulletin of Volcanology

, Volume 70, Issue 2, pp 221–244 | Cite as

Volcanic hazards at Mount Semeru, East Java (Indonesia), with emphasis on lahars

  • Jean-Claude Thouret
  • Franck Lavigne
  • Hiroshi Suwa
  • Bambang Sukatja
  • Surono
Research Article


Mt. Semeru, the highest mountain in Java (3,676 m), is one of the few persistently active composite volcanoes on Earth, with a plain supporting about 1 million people. We present the geology of the edifice, review its historical eruptive activity, and assess hazards posed by the current activity, highlighting the lahar threat. The composite andesite cone of Semeru results from the growth of two edifices: the Mahameru ‘old’ Semeru and the Seloko ‘young’ Semeru. On the SE flank of the summit cone, a N130-trending scar, branched on the active Jonggring-Seloko vent, is the current pathway for rockslides and pyroclastic flows produced by dome growth. The eruptive activity, recorded since 1818, shows three styles: (1) The persistent vulcanian and phreatomagmatic regime consists of short-lived eruption columns several times a day; (2) increase in activity every 5 to 7 years produces several kilometer-high eruption columns, ballistic bombs and thick tephra fall around the vent, and ash fall 40 km downwind. Dome extrusion in the vent and subsequent collapses produce block-and-ash flows that travel toward the SE as far as 11 km from the summit; and (3) flank lava flows erupted on the lower SE and E flanks in 1895 and in 1941–1942. Pyroclastic flows recur every 5 years on average while large-scale lahars exceeding 5 million m3 each have occurred at least five times since 1884. Lumajang, a city home to 85,000 people located 35 km E of the summit, was devastated by lahars in 1909. In 2000, the catchment of the Curah Lengkong River on the ESE flank shows an annual sediment yield of 2.7 × 105 m3 km−2 and a denudation rate of 4 105 t km−2 yr−1, comparable with values reported at other active composite cones in wet environment. Unlike catchments affected by high magnitude eruptions, sediment yield at Mt. Semeru, however, does not decline drastically within the first post-eruption years. This is due to the daily supply of pyroclastic debris shed over the summit cone, which is remobilised by runoff during the rainy season. Three hazard-prone areas are delineated at Mt. Semeru: (1) a triangle-shaped area open toward the SE has been frequently swept by dome-collapse avalanches and pyroclastic flows; (2) the S and SE valleys convey tens of rain-triggered lahars each year within a distance of 20 km toward the ring plain; (3) valleys 25 km S, SE, and the ring plain 35 km E toward Lumajang can be affected by debris avalanches and debris flows if the steep-sided summit cone fails.


Volcanic hazards Mount Semeru Java (Indonesia) Composite cone Eruptive activity Lahar Sediment yield 



This work was supported by the former ‘Coordination de la Recherche Volcanologique’ (OPGC) and the Laboratoire Magmas et Volcans (UMR 6524-CNRS) in Clermont-Ferrand, by the Laboratoire de géographie physique (UMR 8591-CNRS) in Meudon, and by the grant No.15404017 in aid of Japan Society of the Promotion of Science. We thank the Semeru Volcano Observatory of the Geological Institute of Indonesia in Gunung Sawur, Mr. Dodi and Darmono of the Mt. Semeru Project in Lumajang, and, as well as the people of the Curah Lengkong village and L. Thouret for field assistance. Unpublished research reports from BSc. students E. Keim, M. Morelière, J. Declercq, T. Boyer, and B. Caron, have provided useful data to our study. Reviews by J.L. Macías and G. Carrasco-Nuñez have been appreciated. This is contribution No.5 of the ACI research programme ‘Aléas et changements globaux’ funded by INSU-CNRS.


  1. Ancey C (2003) Role of particle network in concentrated mud suspensions. In: Rickenman D, Chen CL (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment, vol 1. Millpress, Rotterdam, pp 257–268Google Scholar
  2. Berzi D, Mambretti S (2003) Mathematical modeling and experimental tests of unsteady flow of non-Newtonian fluids. In: Rickenman D, Chen CL (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment, vol 1. Millpress, Rotterdam, pp 447–456Google Scholar
  3. Bourdier J-L, Abdurachman EK (2001) Decoupling of small-volume pyroclastic flows and related hazards at Merapi volcano, Indonesia. Bull Volcanol 63:309–325CrossRefGoogle Scholar
  4. Bronto S, Hamidi S, Martono A (1996) Disaster-prone zone map of Semeru volcano, East Java (1:50,000 scale). Direktorat Vulkanologi, Volc Survey Indonesia, BandungGoogle Scholar
  5. Carn SA (1999) Application of synthetic aperture radar (SAR) imagery to volcano mapping in the humid tropics: a case study in East Java, Indonesia. Bull Volcanol 61:92–105CrossRefGoogle Scholar
  6. Dana IN (1997) Perubahan morfologi Kawasan puncak dan pengaruhnya terhadap daeraah bahaya gunungapi, kasus G. Semeru (morphological changes of volcano summit and implication for volcanic hazards, Mt. Semeru as a case). Internal report, VSI, Bandung, pp 8Google Scholar
  7. Dana IN, Wildan A, Agus Martono, Dio Sutresna, Triyono, Rochman, Djuadi (1996) Evaluasi kegiatan G. Semeru, Jawa Timur, Mei (assessment of the Mt. Semeru volcanic activity, East Java). VSI, Bandung, pp 44Google Scholar
  8. Druitt TH, Kokelaar BP (eds) (2002) The eruption of Soufrière Hills volcano, Monserrat, from 1995 to 1999. Geol Soc London Mem 21:575Google Scholar
  9. Gomez C (2001) Les lahars du volcan Semeru : dynamique et action morphogénique. (unpubl.) MSc report, université Paris I Panthéon-Sorbonne, pp 111Google Scholar
  10. GVN (1996) Global Volcan Network Bulletin, Semeru 21(9):6, 21(11):9Google Scholar
  11. GVN (1997) Global Volcan Network Bulletin, Semeru 20 (5):4–5, 22(6):7, (8):2, (10):2Google Scholar
  12. GVN (1999) Global Volcan Network Bulletin, Semeru 24(5):7, (8):6, (9):16Google Scholar
  13. GVN (2000) Global Volcan Network Bulletin, Semeru 25(7):4–7Google Scholar
  14. GVN (2001) Global Volcan Network Bulletin, Semeru 26(8):4–6Google Scholar
  15. GVN (2002) Global Volcan Network Bulletin, Semeru 27(6):2, (9):7–8, (12):7Google Scholar
  16. GVN (2003) Global Volcan Network Bulletin, Semeru 28(4):11–13, 28 (7):5, (9):7–8Google Scholar
  17. Hirano M, Hikida M (1985) The distribution of volcanic ash around Mt. Sakurajima. In: Proceedings of the International Symposium on Erosion, Debris flows, and Disaster Prevention. Tsukuba, Japan, 3–5 September 1984, pp 261–264Google Scholar
  18. Ikeda A, Hara Y (2003) Flow properties of debris flows on the Kitamata valley of the Name River, Japan. In: Rickenman D, Chen CL (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment, vol 2. Millpress, Rotterdam, pp 863–870Google Scholar
  19. Itoh T, Miyamoto K, Egashira S (2003) Numerical simulations of debris flow over erodible bed. In: Rickenman D, Chen CL (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment, vol 1. Millpress, Rotterdam, pp 457–468Google Scholar
  20. Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296CrossRefGoogle Scholar
  21. Iverson RM (2003) The debris-flow rheology myth. In: Rickenman D, Chen CL (eds) Debris flow hazards mitigation: mechanics, prediction, and assessment, vol 2. Millpress, Rotterdam, pp 303–314Google Scholar
  22. Iverson RM, Costa JE, LaHusen R (1992) Debris-flow flume at H.J. Andrews Experimental Forest, Oregon. US Geol Surv Open-File Report, pp 92–483Google Scholar
  23. Kemmerling GLL (1922) Het Aquatische transport der Semeru-producten naar de omliggende vlakten (Het natte gevaar) (translated by K. Kusumadinata, 26 October, 1987). Vulkanol Meded 4:11–19Google Scholar
  24. Kusumadinata K (1979) Semeru. Data dasar gunungapi Indonesia (Catalogue of references on Indonesian volcanoes with historical eruptions), VSI, Bandung, pp 304–320Google Scholar
  25. Lavigne F (2004) Rate of sediment yield following small-scale volcanic eruptions: a quantitative assessment at the Merapi and Semeru stratovolcanoes, Java, Indonesia. Earth Surf Landf Proc 29:1045–1058CrossRefGoogle Scholar
  26. Lavigne F, Suwa H (2004) Contrasts between debris flows, hyperconcentrated flows and stream flows at a channel of Mount Semeru, East Java, Indonesia. Geomorphology 61:45–58CrossRefGoogle Scholar
  27. Lavigne F, Thouret J-C (2000) Les lahars: dépôts, origines et dynamique. Bull Soc Geol Fr 1741:545–557CrossRefGoogle Scholar
  28. Lavigne F, Thouret J-C (2002a) Erosion, sedimentation et lahars sur le volcan Semeru, Java est, Indonesia. In: Delahaye D, Maquaire O (eds) Geomorphology: from expert opinion to modelling. Université L Pasteur Strasbourg, 26–27 April 2002, pp 193–202Google Scholar
  29. Lavigne F, Thouret J-C (2002b) Sediment transportation and deposition by rain-triggered lahars at Merapi volcano, central Java, Indonesia. Geomorphology 49:45–69CrossRefGoogle Scholar
  30. Lavigne F, Thouret J-C, Voight B, Young K, LaHusen R, Marso J, Suwa H, Sumaryono A, Sayudi DS, Dejean M (2000a) Instrumental lahar monitoring at Merapi volcano, Central Java, Indonesia. In: Voight B, Sukhyar R, Wirakusumah AD (eds) Merapi Volcano. J Volcanol Geotherm Res 100:457–478Google Scholar
  31. Lavigne F, Thouret J-C, Voight B, Suwa H, Sumaryono A (2000b) Lahars at Merapi volcano, Central Java: an overview. In: Voight B, Sukhyar R, Wirakusumah AD (eds) Merapi Volcano. J Volcanol Geotherm Res 100:423–456Google Scholar
  32. Lavigne F, Tirel A, Le Floch D, Veyrat-Charvillon S (2003) A real-time assessment of lahar dynamics and sediment load based on video-camera recording at Semeru volcano, Indonesia. In: Rickenman D, Chen CL (eds) Debris flow hazards mitigation: mechanics, prediction, and assessment, vol 2. Millpress, Rotterdam, pp 871–882Google Scholar
  33. Liu KF, Huang MC (2003) Three-dimensional numerical simulation of debris flows and its applications. In: Rickenman, Chen CL (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment, vol 1. Millpress, Rotterdam, pp 469–480Google Scholar
  34. Major JJ, Iverson RM (1999) Debris-flow deposition-effects of pore-fluid pressure and friction concentrated at flow margins. Geol Soc Amer Bull 111:1424–1434CrossRefGoogle Scholar
  35. Major JJ, Pierson TC, Dinehart RL, Costa JE (2000) Sediment yield following severe volcanic disturbance—a two-decades perspective from Mount St. Helens. Geology 28:819–822CrossRefGoogle Scholar
  36. Morelière M (2001) Les risques volcaniques : menaces, vulnérabilité, le volcan Semeru, Indonésie. (Unpubl.) MS report, université Lumière Lyon 2, pp 186Google Scholar
  37. Mulyadi E (1992) Le complexe de Bromo-Tengger, Est Java, Indonésie. Etude structurale et volcanologique. (Unpubl.) PhD thesis, département de géologie, université Blaise Pascal, Clermont-Ferrand, pp 136Google Scholar
  38. Nus-CRISP (2006) Images from space, Calendar 2006, ©Spot Asia, Centre for Remote Imaging, Sensing and Processing, National University of Singapore, SingaporeGoogle Scholar
  39. Pierson TC (1985) Initiation and flow behavior of the 1980 Pine Creek and Muddy River lahars, Mount St. Helens, Washington. Geol Soc Amer Bull 96:1056–1069CrossRefGoogle Scholar
  40. Pierson TC, Daag AS, Delos Reyes PJ, Regalado TM, Solidum RU, Tubinosa BS (1997) Flow and deposition of post-eruption hot lahars on the east side of Mount Pinatubo, July–October 1991. In: Newhall CG, Punongbayan RS (eds) Fire and Mud: eruptions and lahars of Mount Pinatubo, Philippines. University of Washington, Seattle, pp 921–950Google Scholar
  41. Purbawinata MA, Hendrasto M, Martono A, Triastuty H, Rosadi U, Mulyana I, Suparno, Liswanto, Susanto (2003) “Hot News” Gunungapi Semeru, Kegiatan Awan Panas Desember 2002–Januari 2003. (Internal report on the Semeru pyroclastic flows, unpubl), VSI, G. Sawur, 4 January 2003, pp 7Google Scholar
  42. Sadjiman, Iman K Sinulingga, Hendra Gunawan (1995) Penyebaran dan perhitungan volume awanpanas guguran G. Semeru, Jawa Timur, 20 Juli 1995 (Dispersion and volume calculation of dome-collapse pyroclastic flow at Mt. Semeru, East Java, 20 July 1995). VSI, Bandung, pp 14Google Scholar
  43. Saucedo R, Macías JL, Bursik M (2004) Pyroclastic flows deposits of the 1991 eruption of Volcán de Colima, Mexico. Bull Volcanol 66:291–306CrossRefGoogle Scholar
  44. Savage SB, Iverson RM (2003) Surge dynamics coupled to pore-pressure evolution in debris flows. In: Rickenman D, Chen CL (eds) Debris flow hazards mitigation: mechanics, prediction, and assessment, vol 1. Millpress, Rotterdam, pp 503–514Google Scholar
  45. Scott K, Vallance JW, Pringle PT (1995) Sedimentology, behavior, and hazards of debris flows at Mount Rainier, Washington. US Geol Surv Prof Paper 1547, pp 56Google Scholar
  46. Simkin T, Siebert L (1994) Volcanoes of the world, 2nd edn. Smithsonian Institution, Geoscience Press, Tucson, Arizona, pp 349Google Scholar
  47. Siswowidjojo S, Widaningsih N, Rubiati A, Mulyati B, De Neve GA (1994) Laporan pelaksanaan bimbingan gunungapi G. Semeru di Kabupaten Lumajang, Propinsi Jawa Timur, September 1994 (Report on works carried out at Semeru volcano in the Lumajang district, East-Java province, September 1994). VSI, Bandung, p 38Google Scholar
  48. Siswowidjoyo S, Sudarsono U, Wirakusumah AD (1997) The threat of hazards in the Semeru volcano region in East Java, Indonesia. J Asian Earth Sci 15:185–194Google Scholar
  49. Situmorang T (1989) Lahar and pyroclastic flow hazards zoning of Semeru volcano, East Java, Indonesia (using aerial photograph). International Symposium on Erosion and Volcanic Debris Flow Technology, Yogyakarta, Indonesia, July–August 1989, pp 12Google Scholar
  50. Suryo I (1986) G. Semeru. Berita Berkala Vulkanologi. Edisi Khusus no. 111, VSI, Bandung pp 52Google Scholar
  51. Sutawidjaja IS, Wahyudin D, Kusdinar E (1996) Geological map of Semeru volcano, East Java (1:50,000 scale). Direktorat Vulkanologi, VSI, BandungGoogle Scholar
  52. Suwa H (1988) Focusing mechanism of large boulders to a debris flow front. Trans Jpn Geomorphol Union 9:151–178Google Scholar
  53. Suwa H, Sumaryono A (1996) Sediment discharge by storm runoff from a creek on Mount Merapi. J Jpn Soc Eros Control Eng 48:117–128Google Scholar
  54. Suwa H, Yamakoshi T (1999) Sediment discharge by storm runoff at volcanic torrents affected by eruption. Z Geomorphol Suppl Bd 114:63–88Google Scholar
  55. Takahama J, Fujita Y, Hachiya K, Yoshino K (2003) Application of two-layer simulation model for unifying debris flow and sediment sheet flow and its improvement. In: Rickenman D, Chen CL (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment, vol 1. Millpress, Rotterdam, pp 515–526Google Scholar
  56. Thouret J-C (2004) Geomorphic processes and hazards on volcanic mountains. In: Owens Ph, Slaymaker O (eds) Mountain geomorphology, chapter 11. Arnold, London, pp 242–273Google Scholar
  57. Thouret J-C, Lavigne F, Kelfoun K, Bronto S (2000) Toward a revised assessment of volcanic hazards at Merapi, Central Java. In: Voight B, Sukhyar R, Wirakusumah AD (eds) Merapi Volcano. J Volcanol Geotherm Res 100:479–502Google Scholar
  58. Tuñgol NM, Regalado MTM (1996) Rainfall, acoustic flow monitor records, and observed lahars of the Sacobia River in 1992. In: Newhall CG, Punongbayan RS (eds) Fire and Mud. University of Washington, Seattle, pp 1023–1032Google Scholar
  59. Van Bemmelen RW (1942) De Semoroe. Open File, Direktorat Volkanologi, VSI, Bandung (in Dutch), pp 12Google Scholar
  60. Van Bemmelen RW (1949) The geology of Indonesia and adjacent archipelago. Government Printing Office, The Hague, pp 150Google Scholar
  61. Van Padang NM (1951) Semeru. Catalogue of the active volcanoes of the world including solfatara fields. Part 1. Indonesia. Internat Volcanol Assoc, Napoli, Italy, pp 271Google Scholar
  62. Volcanic Sabo Technical Center VSTC (1989) Geographical notes for volcanic debris control projects. Ministry of Public Works, Yogyakarta, pp 49–64Google Scholar
  63. Wahyudin D (1991) Volcanology and petrology of Mt. Semeru volcanic complex, East Java, Indonesia. Diploma of Applied Science (Volcanology), Victoria University of Wellington, New Zealand, pp 126Google Scholar
  64. Yachiyo Engineering, Nippon Koei, PT Tricon Jaya (1986) Engineering services on Mt Semeru urgent rehabilitation project. Detailed design main report, Bandung, pp 30Google Scholar
  65. Yamakoshi T, Suwa H (2000) Post-eruption characteristics of surface runoff and sediment discharge on the slopes of pyroclastic-flow deposits, Mount Unzen Japan. Trans Jpn Geomorph Union 21:469–497Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jean-Claude Thouret
    • 1
  • Franck Lavigne
    • 2
  • Hiroshi Suwa
    • 3
  • Bambang Sukatja
    • 4
  • Surono
    • 5
  1. 1.Département de géologie, Laboratoire Magmas et Volcans UMR 6524 CNRS, OPGC et IRDuniversité Blaise PascalClermont-Ferrand cedexFrance
  2. 2.Laboratoire de Géographie physiqueUMR 8591 CNRS et université Paris 1—SorbonneMeudonFrance
  3. 3.Disaster Prevention Research InstituteKyoto UniversityGokasho UjiJapan
  4. 4.SlemanIndonesia
  5. 5.Directorate of Volcanology and Geological Hazard MitigationBandungIndonesia

Personalised recommendations