Bulletin of Volcanology

, Volume 69, Issue 6, pp 609–626 | Cite as

Volcanoes of the Tibesti massif (Chad, northern Africa)

Research Article

Abstract

The Tibesti massif, one of the most prominent features of the Sahara desert, covers an area of some 100,000 km2. Though largely absent from scientific inquiry for several decades, it is one of the world’s major volcanic provinces, and a key example of continental hot spot volcanism. The intense activity of the TVP began as early as the Oligocene, though the major products that mark its surface date from Lower Miocene to Quaternary (Furon (Geology of Africa. Oliver & Boyd, Edinburgh (trans 1963, orig French 1960), pp 1–377, 1963)); Gourgaud and Vincent (J Volcanol Geotherm Res 129:261–290, 2004). We present here a new and consistent analysis of each of the main components of the Tibesti Volcanic Province (TVP), based on examination of multispectral imagery and digital elevation data acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Our synthesis of these individual surveys shows that the TVP is made up of several shield volcanoes (up to 80 km diameter) with large-scale calderas, extensive lava plateaux and flow fields, widespread tephra deposits, and a highly varied structural relief. We compare morphometric characteristics of the major TVP structures with other hot spot volcanoes (the Hawaiian Islands, the Galápagos Islands, the Canary and Cape Verdes archipelagos, Jebel Marra (western Sudan), and Martian volcanoes), and consider the implications of differing tectonic setting (continental versus oceanic), the thickness and velocity of the lithosphere, the relative sizes of main volcanic features (e.g. summit calderas, steep slopes at summit regions), and the extent and diversity of volcanic features. These comparisons reveal morphologic similarities between volcanism in the Tibesti, the Galápagos, and Western Sudan but also some distinct features of the TVP. Additionally, we find that a relatively haphazard spatial development of the TVP has occurred, with volcanism initially appearing in the Central TVP and subsequently migrating to both the Eastern and Western TVP regions.

Keywords

Tibesti volcanic province Tibesti massif TVP ASTER Continental hot spot Chad African geology 

Notes

Acknowledgements

We thank the ASTER team, and especially Elsa Abbott (NASA-JPL), for help and advice with the ASTER imagery and processing, and NASA’s EOSDIS for data and support. We are also grateful to Rob Jones and Kevin Lawless at RSI, UK, for their help in acquiring and servicing ENVI software and related modules. We are deeply grateful to Shan de Silva and David Crown for their invaluable comments and advice for revision of the original manuscript.

Supplementary material

445_2006_98_Fig1a_ESM.jpg (87 kb)
ESM Fig. 1

a satellite view of the Emi Koussi composite volcano (19.83°N, 18.55 °E; image ID pg-PR1B0000-2002012902_105_001; bands 3, 2, 1 as R, G, B). Emi Koussi is the highest feature in the Tibesti and the entire Sahara desert, reaching an elevation of 3,394 m above sea level. Inset is a close-up of the Emi Koussi caldera system (∼9 × 12 km) b DEM-based topographic profile of the Emi Koussi nested caldera system, generated from the original ASTER image. The topographic step seen within the caldera system delineates the inner caldera boundary as the Era Kohor crater is approached from the northwest. Note the light-toned, carbonate-rich evaporite deposit on the floor of Era Kohor, located in the southeast portion of the inner caldera ((A) JPEG 87.1 kb) ((B) JPEG 60.4 kb)

445_2006_98_Fig1b_ESM.jpg (60 kb)
ESM Fig. 1

a satellite view of the Emi Koussi composite volcano (19.83°N, 18.55 °E; image ID pg-PR1B0000-2002012902_105_001; bands 3, 2, 1 as R, G, B). Emi Koussi is the highest feature in the Tibesti and the entire Sahara desert, reaching an elevation of 3,394 m above sea level. Inset is a close-up of the Emi Koussi caldera system (∼9 × 12 km) b DEM-based topographic profile of the Emi Koussi nested caldera system, generated from the original ASTER image. The topographic step seen within the caldera system delineates the inner caldera boundary as the Era Kohor crater is approached from the northwest. Note the light-toned, carbonate-rich evaporite deposit on the floor of Era Kohor, located in the southeast portion of the inner caldera ((A) JPEG 87.1 kb) ((B) JPEG 60.4 kb)

445_2006_98_Fig2a_ESM.jpg (71 kb)
ESM Fig. 2

aTarso Tieroko (20.77 °N, 17.87 °E; image ID pg-PR1B0000-2002022002-220_001; bands 3, 2, 1 as R, G, B) b Tarso Toon (21.07 °N, 17.62 °E; image ID AST1B-00311212003092756_12022003120322; bands 3, 2, 1 as R, G, B) cc/NOEhi Yéy (20.85 °N, 17.53 °E; image ID AST1B-00311212003092756_12022003120322; bands 3,2,1 as R,G,B). Topographic profile data are from DEMs generated from the original ASTER images ((A)JPEG 71.0 kb) ((B)JPEG 58.8 kb) ((C)JPEG 59.7 kb)

445_2006_98_Fig2b_ESM.jpg (59 kb)
ESM Fig. 2

aTarso Tieroko (20.77 °N, 17.87 °E; image ID pg-PR1B0000-2002022002-220_001; bands 3, 2, 1 as R, G, B) b Tarso Toon (21.07 °N, 17.62 °E; image ID AST1B-00311212003092756_12022003120322; bands 3, 2, 1 as R, G, B) cc/NOEhi Yéy (20.85 °N, 17.53 °E; image ID AST1B-00311212003092756_12022003120322; bands 3,2,1 as R,G,B). Topographic profile data are from DEMs generated from the original ASTER images ((A)JPEG 71.0 kb) ((B)JPEG 58.8 kb) ((C)JPEG 59.7 kb)

445_2006_98_Fig2c_ESM.jpg (60 kb)
ESM Fig. 2

aTarso Tieroko (20.77 °N, 17.87 °E; image ID pg-PR1B0000-2002022002-220_001; bands 3, 2, 1 as R, G, B) b Tarso Toon (21.07 °N, 17.62 °E; image ID AST1B-00311212003092756_12022003120322; bands 3, 2, 1 as R, G, B) cc/NOEhi Yéy (20.85 °N, 17.53 °E; image ID AST1B-00311212003092756_12022003120322; bands 3,2,1 as R,G,B). Topographic profile data are from DEMs generated from the original ASTER images ((A)JPEG 71.0 kb) ((B)JPEG 58.8 kb) ((C)JPEG 59.7 kb)

445_2006_98_Fig3a_ESM.jpg (65 kb)
ESM Fig. 3

aTarso Yega (20.66 °N, 17.42 °E; image ID pg-PR1B0000-2002020402_070_001; bands 3, 2, 1 as R, G, B) bTarso Voon (20.92 °N, 17.27 °E; image ID pg-PR1B0000-2002020402_070_001; bands 3,2,1 as R,G,B). Topographic profile data are from DEMs generated from the original ASTER images ((A)JPEG 64.8 kb)((B)JPEG 67.2 kb)

445_2006_98_Fig3b_ESM.jpg (67 kb)
ESM Fig. 3

aTarso Yega (20.66 °N, 17.42 °E; image ID pg-PR1B0000-2002020402_070_001; bands 3, 2, 1 as R, G, B) bTarso Voon (20.92 °N, 17.27 °E; image ID pg-PR1B0000-2002020402_070_001; bands 3,2,1 as R,G,B). Topographic profile data are from DEMs generated from the original ASTER images ((A)JPEG 64.8 kb)((B)JPEG 67.2 kb)

445_2006_98_Fig4_ESM.jpg (41 kb)
ESM Fig. 4

Nighttime thermal infrared image (ASTER band 13) showing Tarso Voon and the nearby Soborom dome (inset) on 4 February 2002. The bright pixelsbright pixels indicate elevated thermal activity relative to the surrounding region (accurate absolute temperatures have not yet been resolved). Pixel resolution within inset is 90 m. Image ID: pg-PR1B0000-2002020402_070_001; bands 3, 2, 1 as R, G, B (JPEG 40.5 kb)

445_2006_98_Fig5_ESM.jpg (69 kb)
ESM Fig. 5

Tarso Abeki (21.00 °N, 16.99 °E; image ID pg-PR1B0000-2002070302_032_001; bands 3, 2, 1 as R, G, B). Topographic profile data are from DEMs generated from the original ASTER image (JPEG 68.6 kb)

445_2006_98_Fig6a_ESM.jpg (69 kb)
ESM Fig. 6

aTarso Ourari (centred at 21.32 °N, 17.53 °E; image ID AST1B-00305202003093333_06122003122421; bands 3, 2, 1 as R, G, B) bTarso Voon (20.92 °N, 17.27 °E; image ID pg-PR1B0000-2002020402_070_001; bands 3,2,1 as R,G,B). Topographic profile data are from DEMs generated from the original ASTER images ((A)JPEG 68.5 kb) ((B)JPEG 68.7 kb)

445_2006_98_Fig6b_ESM.jpg (69 kb)
ESM Fig. 6

aTarso Ourari (centred at 21.32 °N, 17.53 °E; image ID AST1B-00305202003093333_06122003122421; bands 3, 2, 1 as R, G, B) bTarso Voon (20.92 °N, 17.27 °E; image ID pg-PR1B0000-2002020402_070_001; bands 3,2,1 as R,G,B). Topographic profile data are from DEMs generated from the original ASTER images ((A)JPEG 68.5 kb) ((B)JPEG 68.7 kb)

445_2006_98_Fig7_ESM.jpg (58 kb)
ESM Fig. 7

Interpreted boundaries of the of pre-Toussidé nested caldera system. Note that the summit of the dark-toned Pic Toussidé lies just above the western obscured rim of the outer caldera. Trou au Natron, seen in the lower right, clearly dissects the original topographic rim of the outer caldera. Image ID AST1B-02132003093424_03112003191639; bands 3, 2, 1 as R, G, B (JPEG 58.1 kb)

445_2006_98_Fig8_ESM.jpg (61 kb)
ESM Fig. 8

Trou au Natron (20.98 °N, 16.57 °E; image ID AST1B-02132003093424_03112003191639; bands 3, 2, 1 as R, G, B). The light-toned, sodium-rich deposits on the crater floor are clearly visible, as are several isolated dark-toned cones. Topographic profile data are from DEMs generated from the original ASTER image (JPEG 60.6 kb)

445_2006_98_Fig9a_ESM.jpg (95 kb)
ESM Fig. 9

aRelative emplacement sequence for discrete lava flows extruded from Pic Toussidé, discriminated using processed ASTER satellite imagery bTarso Voon (20.92 °N, 17.27 °E; image ID pg-PR1B0000-2002020402_070_001; bands 3,2,1 as R,G,B). Topographic profile data are from DEMs generated from the original ASTER images ((A)JPEG 94.8 kb) ((B)JPEG 44.9 kb)

445_2006_98_Fig9b_ESM.jpg (45 kb)
ESM Fig. 9

aRelative emplacement sequence for discrete lava flows extruded from Pic Toussidé, discriminated using processed ASTER satellite imagery bTarso Voon (20.92 °N, 17.27 °E; image ID pg-PR1B0000-2002020402_070_001; bands 3,2,1 as R,G,B). Topographic profile data are from DEMs generated from the original ASTER images ((A)JPEG 94.8 kb) ((B)JPEG 44.9 kb)

445_2006_98_Fig10a_ESM.jpg (63 kb)
ESM Fig. 10

aEhi Sosso (21.00 °N, 16.70 °E; image ID AST1B-02132003093424_03112003191639, bands 3, 2, 1 as R, G, B); bTimi (21.16 °N, 16.58 °E; image ID AST1B-02132003093424_03112003191639; bands 3, 2, 1 as R, G, B). Topographic profile data are from DEMs generated from the original ASTER images ((A)JPEG 63.2 kb) ((B)JPEG 58.8 kb)

445_2006_98_Fig10b_ESM.jpg (59 kb)
ESM Fig. 10

aEhi Sosso (21.00 °N, 16.70 °E; image ID AST1B-02132003093424_03112003191639, bands 3, 2, 1 as R, G, B); bTimi (21.16 °N, 16.58 °E; image ID AST1B-02132003093424_03112003191639; bands 3, 2, 1 as R, G, B). Topographic profile data are from DEMs generated from the original ASTER images ((A)JPEG 63.2 kb) ((B)JPEG 58.8 kb)

445_2006_98_Fig11_ESM.jpg (66 kb)
ESM Fig. 11

Doon Kidimi (21.03 °N, 16.61 °E; image ID AST1B-02132003093424_03112003191639; bands 3, 2, 1 as R, G, B). Topographic profile data are from DEMs generated from the original ASTER image (JPEG 65.6 kb)

445_2006_98_Fig12_ESM.jpg (87 kb)
ESM Fig. 12

Tarso Tôh (centred at 21.38 °N, 16.39 °E; image ID pg-PR1B0000-2001111104_140_001; bands 3, 2, 1 as R, G, B). Topographic profile data are from DEMs generated from the original ASTER image (JPEG 87.2 kb)

References

  1. Ablay GJ, Marti J (2000) Stratigraphy, structure, and volcanic evolution of the Pico Teide–Pico Viejo formation, Tenerife, Canary Islands. J Geophys Res 103:175–208Google Scholar
  2. Abrams M, Hook SJ (1995) Simulated Aster data for geologic studies. IEEE Trans Geosci Remote Sens 33:692–699CrossRefGoogle Scholar
  3. Banerdt B, Chicarro AF, Coradini M, Federico C, Greeley R, Hechler M, Knudsen JM, Leovy C, Lognonné Ph, Lowry L, McCleese D, McKay C, Pellinen R, Phillips R, Scoon GEN, Spohn T, Squyres S, Taylor F, Wänke H (1996) INTERMARSNET Phase-A Study Report. ESA Publication D/SCI(96)2Google Scholar
  4. Burke K (1996) The African plate. S Afr J Geol 99:339–410Google Scholar
  5. Burke K (2001) Origin of the Cameroon line of volcano-capped swells. J Geol 109:349–362CrossRefGoogle Scholar
  6. Cahen L, Snelling NJ, Delhal J, Vail JR (1984) The geochronology and evolution of Africa. Clarendon, Oxford, p 512Google Scholar
  7. Cantagrel JM, Arnaud NO, Ancochea E, Fuster JM, Huertas MJ (1999) Repeated debris avalanches on Tenerife and genesis of Las Cañadas caldera wall (Canary Islands). Geology 27:739–742CrossRefGoogle Scholar
  8. Cervelli P, Segall P, Amelung F, Garbeil H, Meertens C, Owen S, Miklius A, Lisowski M (2002) The 12 September 1999 Upper East Rift Zone dike intrusion at Kilauea Volcano, Hawaii. J Geophys Res 107:2150. DOI 10.1029/2001JB000602 Google Scholar
  9. Chadwick WW Jr, Howard KA (1991) The pattern of circumferential and radial eruptive fissures on the volcanoes of Fernandina and Isabela islands, Galápagos. Bull Volcanol 53:259–275CrossRefGoogle Scholar
  10. Cohen R (1994) “Chad wins world court decision in territorial dispute with Libya.” The New York Times, February 4, p A6Google Scholar
  11. Crough ST (1978) Thermal origin of mid-plate hotspot swells. Geophys J R Astron Soc 55:451–469Google Scholar
  12. Dañobeitia JJ, Canales JP (2000) Magmatic underplating in the Canary Archipelago. J Volcanol Geotherm Res 103:27–41CrossRefGoogle Scholar
  13. Dautria JM, Lesquer A (1989) An example of the relationship between rift and dome: recent geodynamic evolution of the Hoggar swell and of its nearby regions (Central Sahara, Southern Algeria and Eastern Niger). Tectonophysics 163:45–61CrossRefGoogle Scholar
  14. Davidson JP, Harmon RS, Worner G (1991) The source of central Andean magmas: some considerations. In: Harmon RS, Rapella CW (eds) Andean magmatism and its tectonic setting. Geol Soc Am Spec Paper 265:233–244Google Scholar
  15. Davies AG, Keszthelyi LP, Williams DA, Phillips CB, McEwen AS, Lopes RMC, Smythe WD, Kamp LW, Soderblom LA, Carlson RW (2001) Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io. J Geophys Res 106:33, 079–33, 103CrossRefGoogle Scholar
  16. Deruelle B, Moreau C, Nkoumbou C, Kambou R, Lissom J, Njonfang E, Ghogomu RT, Nono A (1991) The Cameroon line: a review. In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural settings, the Phanerozoic African Plate. Springer, Berlin Heidelberg New York, pp 274–327Google Scholar
  17. de Silva SL, Francis P (1990) Potentially active volcanoes of Peru—observations using Landsat Thematic Mapper and Space Shuttle imagery. Bull Volcanol 52:286–301CrossRefGoogle Scholar
  18. Dziewonski AM, Chou TA, Woodhouse JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res 86:2825–2852Google Scholar
  19. Earth Sciences and Image Analysis, NASA-Johnson Space Center (27 Jun. 2003) “The Gateway to Astronaut Photography of Earth.” <http://eol.jsc.nasa.gov/Info/use.htm> (2 Nov. 2003)
  20. Ebinger CJ, Sleep NH (1998) Cenozoic magmatism throughout East Africa resulting from impact of a single plume. Nature 395:1788–1791CrossRefGoogle Scholar
  21. El Makhrouf AA (1988) Tectonic interpretation of Jabal Eghei area and its regional application to Tibesti orogenic belt, south central Libya (S.P.L.A.J.). J Afr Earth Sci 7:945–967CrossRefGoogle Scholar
  22. Feighner MA, Richards MA (1995) Lithospheric structure and compensation mechanisms of the Galapagos archipelago. J Geophys Res 99:6711–6729CrossRefGoogle Scholar
  23. Filmer PE, McNutt MK (1989) Geoid anomalies over the Canary Islands Group. Mar Geophys Res 11:77–87CrossRefGoogle Scholar
  24. Franz G, Pudlo D, Urlacher G, Haussmann U, Boven A, Wemmer K (1994) The Darfur dome, western Sudan: the product of a subcontinental mantle plume. Geol Rundsch 83:614–623CrossRefGoogle Scholar
  25. Furon R (1963) Geology of Africa. Oliver & Boyd, Edinburgh (trans 1963, orig French 1960), pp 1–377Google Scholar
  26. Gèze B, Hudeley H, Vincent P, Wacrenier P (1959) The volcanoes of the Tibesti (Sahara of Chad) (in French). Bull Volcanologique 22:135–188CrossRefGoogle Scholar
  27. Ghuma MA, Rogers JJW (1978) Geology, geochemistry, and tectonic setting of the Ben Ghnema batholith, Tibesti massif, southern Libya. Geol Soc Am Bull 89:1351–1358CrossRefGoogle Scholar
  28. Global Volcanism Network (1991a) Report for August 1991, p 15Google Scholar
  29. Global Volcanism Network (1991b) Report for September 1991, p 4Google Scholar
  30. Goodell PC (1992) Uranium potential of the Tibesti and Hoggar massifs, north–central Africa. Geol Libya 7:2627–2637Google Scholar
  31. Gourgaud A, Vincent PM (2004) Petrology of two continental alkaline intraplate series at Emi Koussi volcano, Tibesti, Chad. J Volcanol Geotherm Res 129:261–290CrossRefGoogle Scholar
  32. Gripp AE, Gordon RG (1990) Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model. Geophys Res Lett 17:1109–1112Google Scholar
  33. Grove A (1960) Geomorphology of the Tibesti region with special reference to western Tibesti. Geograph J 126:18–31CrossRefGoogle Scholar
  34. Grove TI (2000) Origin of magmas. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 133–147Google Scholar
  35. Guiraud R, Doumnang Mbaigane J-C, Carretier S, Dominguez (2000) Evidence for a 6000 km length NW–SE striking lineament in northern African: the Tibesti Lineament. J Geol Soc (Lond) 157:897–900Google Scholar
  36. Hagedorn H, Jakel D (1969) Bemerkungen zur quartaren Entwicklung des Reliefim Tibesti-Gebirge (Tchad). Bulletin de Liaison de l’Association senegalaise pour l’Etude duQuaternaire africain 23:25–42Google Scholar
  37. Hoernle K, Schmincke HU (1993) The role of partial melting in the 15-Ma geochemical evolution of Gran Canaria: a blob model for the Canary hotspot. J Petrol 34:599–626Google Scholar
  38. Hubbard BE, Crowley JK, Zimbelman DR (2003) Comparative alteration mineral mapping using visible to shortwave infrared (0.4–2.4 μm) Hyperion, ALI, and ASTER imagery. IEEE Trans Geosci Rem Sens 41:1401–1410CrossRefGoogle Scholar
  39. International Campaign to Ban Landmines (2001) Landmine Monitor Report 2001: toward a mine-free world. Human Rights Watch, New York, p 1175Google Scholar
  40. Kahle A, Abrams M, Abbott E, Mouginis-Mark P, Realmuto V (1995) Remote sensing of Mauna Loa. In: Rhodes JM, Lockwood JP (eds) Mauna Loa revealed: structure, composition, history, and hazards. Geophys Monog 92, AGU, p 348Google Scholar
  41. Kahle AB, Goetz FH (1983) Mineralogic information from a new airborne thermal infrared multispectral scanner. Science 222:24–27CrossRefGoogle Scholar
  42. Kahle AB, Palluconi FD, Hook SJ, Realmuto VJ, Bothwell G (1991) The advanced spaceborne thermal emission and reflectance radiometer (ASTER). Intl J Imag Sys Technol 3:144–156CrossRefGoogle Scholar
  43. Keddie ST, Head JW (1994) Height and altitude distribution of large volcanoes on Venus. Planet Space Sci 42:456–462CrossRefGoogle Scholar
  44. Kersting AB, Arculus RJ, Gust DA (1996) Lithospheric contributions to arc magmatism: isotope variations along-strike in volcanoes of Honshu, Japan. Science 272:1464–1468CrossRefGoogle Scholar
  45. Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and chamber geometry. Bull Volcanol 59:198–218CrossRefGoogle Scholar
  46. Malin M (1977) Comparison of volcanic features of Elysium (Mars) and Tibesti (Earth). GSA Bull 88:908–919CrossRefGoogle Scholar
  47. Mark RK, Moore JG (1987) Slopes of the Hawaiian Ridge. US Geol Surv Prof Pap 1350:101–107Google Scholar
  48. Marti J, Gudmundsson A (2000) The Las Cañadas caldera (Tenerife, Canary Islands): an overlapping collapse caldera generated by magma-chamber migration. J Volcanol Geotherm Res 103:161–173CrossRefGoogle Scholar
  49. McClelland L, Simkin T, Summers M, Nielson E, Stein TC (1989) Global volcanism 1975–1985. Prentice Hall, Englewood Cliffs, p 655Google Scholar
  50. Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–44CrossRefGoogle Scholar
  51. Morgan WJ (1972) Deep mantle convection plume and plate motions. Am Assoc Petrol Geol Bull 56:203–312Google Scholar
  52. Mouginis-Mark PJ, Robinson MS (1992) Evolution of the Olympus Mons caldera, Mars. Bull Volcanol 54:347–360CrossRefGoogle Scholar
  53. Nordlie BE (1973) Morphology and structure of the western Galapagos volcanoes and a model for their origin. Geol Soc Am Bull 84:2931–2956CrossRefGoogle Scholar
  54. O’Connor JM, Stoffers P, van den Bogaard P, McWilliams M (1999) First seamount age evidence for significantly lower African plate motion since 19 to 30 Ma. Earth Planet Sci Lett 171:575–589CrossRefGoogle Scholar
  55. Okada K, Ishii M (1993) Mineral and lithological mapping using thermal infrared remotely sensed data from ASTER simulator. Geoscience and Remote Sensing Symposium, 1993. IGARSS ’93. ‘Better Understanding of Earth Environment’, International 1:126-128. DOI 10.1109/IGARSS.1993.322501
  56. Oppenheimer C (1998) Volcanological applications of meteorological satellites. Int J Rem Sens 19:2829–2864CrossRefGoogle Scholar
  57. Perfit MR, Davidson JP (2000) Plate tectonics and volcanism. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 89–113Google Scholar
  58. Peterson DW, Moore RB (1987) Geologic history and evolution of geologic concepts, island of Hawaii. US Geol Surv Prof Pap 1350:149–189Google Scholar
  59. Phipps Morgan J, Morgan WJ, and Price E (1995) Hotspot melting generates both hotspot volcanism and a hotspot swell? J Geophys Res 100:8045–8062CrossRefGoogle Scholar
  60. Pieri D, Abrams M (2004) ASTER watches the world’s volcanoes: a new paradigm for volcanological observations from orbit. In: Ramsey M, Flynn L, Wright R (eds) (2004) Volcanic observations from space: new results from the EOS satellite instruments. J Volcanol Geotherm Res 135:13–28Google Scholar
  61. Pike RJ (1978) Volcanoes on the inner planets: some preliminary comparisons of gross topography. Proc Lunar Planet Sci Conf 9:3239–3273Google Scholar
  62. Ramsey M, Flynn L, Wright R (eds) (2004) Volcanic Observations from Space: New Results from the EOS satellite instruments. J Volcanol Geotherm Res 135:1–219CrossRefGoogle Scholar
  63. Reynolds RW, Geist D, Kurz MD (1995) Physical volcanology and structural development of Sierra Negra volcano, Isabela Island, Galapagos archipelago. Bull Geol Soc Am 107:1398–1410CrossRefGoogle Scholar
  64. Ribe NM, Christensen UR (1999) The dynamical origin of Hawaiian volcanism. Earth Planet Sci Lett 171:517–531CrossRefGoogle Scholar
  65. Rowland SK, Munro DC, Perez-Oviedo V (1994) Volcan Ecuador, Galapagos Islands: erosion as a possible mechanism for the generation of steep-sided basaltic volcanoes. Bull Volcanol 56:271–283Google Scholar
  66. Saunders AD, Fitton JG, Kerr AC, Norry MJ, Kent RW (1997) The North Atlantic igneous province. In: Mahoney JJ, Coffin MF (eds) Large Igneous Provinces. Geophys Monogr, AGU, pp 45–94Google Scholar
  67. Simkin T, Howard KA (1970) Caldera collapse in the Galapagos Islands. Science 169:429–437CrossRefGoogle Scholar
  68. Simkin T, Siebert L (1994) Volcanoes of the world, 2nd edn. Geoscience, Tucson, pp 349Google Scholar
  69. Smith RB, Braile LW (1994) The Yellowstone hotspot. J Volcanol Geotherm Res 61:121–187CrossRefGoogle Scholar
  70. Stein CA, Stein S (1992) A model for the global variation in oceanic depth and heat-flow with lithospheric age. Nature 359:123–129CrossRefGoogle Scholar
  71. Survey Action Center (2002) Landmine Impact Survey: Republic of Chad. Vietnam Veterans of America, Washington DC, p 188Google Scholar
  72. Swanson DA, Duffield WA, Fiske RS (1976) Displacement of the south flank of Kilauea volcano: the result of forceful intrusion of magma into the rift zones. U S Geol Surv Prof Paper 963:39Google Scholar
  73. Tilho J (1920) The exploration of Tibesti, Erdi, Borkou, and Ennedi in 1912–1917. Geograph J 56:81–99, 161–183, 241–263CrossRefGoogle Scholar
  74. Vachette M (1964) Radiometric ages of crystalline formations of equatorial Africa (Gabon, Central African Republic, Chad, Middle Congo) (in French). Ann Fac Sci Univ Clermont 25:1–31Google Scholar
  75. Vincent PM (1970) The evolution of the Tibesti Volcanic Province, eastern Sahara. In: Clifford TN, Gass IG (eds) African Magmatism and Tectonics. Oliver & Boyd, Edinburgh, pp 461Google Scholar
  76. Walker GPL (1984) Downsag calderas, ring faults, caldera sizes, and incremental caldera growth. J Geothermal Res 89:8407–8416Google Scholar
  77. Walker GPL (1988) Three Hawaiian calderas: an origin through loading by shallow intrusions? J Geophys Res 93:14773–147784CrossRefGoogle Scholar
  78. White RS, McKenzie DP (1995) Mantle plumes and flood basalts. J Geophys Res 100:17543–17585CrossRefGoogle Scholar
  79. Wiart P, Oppenheimer C (2005), Large magnitude silicic volcanism in north Afar: The Nabro Volcanic Range and Ma‘alalta volcano. Bull Volcanol 67:99-115. DOI 10.1007/s00445-004-0362-x Google Scholar
  80. Yamaguchi Y, Kahle AB, Tsu H, Kawakami T, Moshe P (1998) Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans Geosci Rem Sens 36:1062–1071CrossRefGoogle Scholar
  81. Zhao D (2001) Seismic structure and origin of hotspots and mantle plumes. Earth Planet Sci Lett 192:251–265. DOI 10.1016/s0012-821X(01)00465-4 CrossRefGoogle Scholar
  82. Zhao D (2004) Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys Earth Planet Inter 143:3–34. DOI 10.1016/j.pepi.2003.07.032 CrossRefGoogle Scholar
  83. Zimbelman JR (2000) Volcanism on Mars. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 771–783Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of GeographyUniversity of CambridgeCambridgeUK
  2. 2.Department of Geology and Environmental GeosciencesCollege of CharlestonCharlestonUSA

Personalised recommendations