Bulletin of Volcanology

, Volume 68, Issue 6, pp 567–591 | Cite as

Eruptive history and petrologic evolution of the Albano multiple maar (Alban Hills, Central Italy)

  • Carmela FredaEmail author
  • Mario Gaeta
  • Daniel B. Karner
  • Fabrizio Marra
  • Paul R. Renne
  • Jacopo Taddeucci
  • Piergiorgio Scarlato
  • John N. Christensen
  • Luigi Dallai
Research Article


A comprehensive volcanological study of the Albano multiple maar (Alban Hills, Italy) using (i) 40Ar/39Ar geochronology of the most complete stratigraphic section and other proximal and distal outcrops and (ii) petrographic observations, phase analyses of major and trace elements, and Sr and O isotopic analyses of the pyroclastic deposits shows that volcanic activity at Albano was strongly discontinuous, with a first eruptive cycle at 69±1 ka producing at least two eruptions, and a second cycle with two peaks at 39±1 and 36±1 ka producing at least four eruptions. Contrary to previous studies, we did not find evidence of magmatic or hydromagmatic eruptions younger than 36±1 ka. The activity of Albano was fed by a new batch of primary magma compositionally different from that of the older activity of the Alban Hills; moreover, the REE and 87Sr/86Sr data indicate that the Albano magma originated from an enriched metasomatized mantle. According to the modeled liquid line of descent, this magma differentiated under the influence of magma/limestone wall rock interaction. Our detailed eruptive and petrologic reconstruction of the Albano Maar evolution substantiates the dormant state of the Alban Hills Volcanic District.


Eruptive cycles Geochronology Alban Hills Maar Hydromagmatic Ultrapotassic Decarbonation 



Many thanks to E. Boschi and M. Cocco for supporting this research. We are grateful to M. Albano for drawing most of the figures to R. Brooker for measuring the CO2 content in some samples through Fourier-Transform Infrared technique, and to M. Serracino for technical assistance during microprobe analyses. The final version of the manuscript was improved thanks to J. Donnelly-Nolan, M. Ort, M. Lanphere, and K. Bell revisions. Porchetta de Ariccia provided fundamental support to field work

Supplementary material


  1. Asprey LB (1976) The preparation of very pure F2 gas. J Fluorine Chem 7:359–361CrossRefGoogle Scholar
  2. Bohrson WA, Spera FJ (2001) Energy-constrained open-system magmatic processes II: application of Energy-Constrained Assimilation-Fractional Crystallization (EC-AFC) model to magmatic system. J Petrol 42:1019–1041CrossRefGoogle Scholar
  3. Caputo C, Ciccacci S, D’Alessandro L, Davoli L, Fredi P, La Monica GB, Lupia Palmieri E, Pugliese F, Raffi R (1986) Progetto “Lago Albano”. Indagini climatiche, geomorfologiche e sedimentologiche. Ed. by Provincia di Roma, Rome, Italy, pp 1–14Google Scholar
  4. Civitelli G, Funiciello R, Parotto M (1975) Caratteri deposizionali dei prodotti del vulcanismo freatico dei Colli Albani. Geologica Romana 14:1–39Google Scholar
  5. Clayton RN, Mayeda TK (1983) Oxygen isotopes in eucrites, shergottites, nakhilites, and chassignites. Earth Planet Sci Lett 62:1–6CrossRefGoogle Scholar
  6. Conticelli S, D’Antonio M, Pinarelli L, Civetta L (2002) Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr-Nd-Pb isotope data from Roman Province and Southern Tuscany. Mineral Petrol 74:189–222CrossRefGoogle Scholar
  7. Conticelli S, Peccerillo A (1992) Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy: petrogenesis and inferences on the evolution of the mantle sources. Lithos 28:221–240CrossRefGoogle Scholar
  8. Dallai L, Freda C, Gaeta M (2004) Oxygen isotope geochemistry of pyroclastic clinopyroxene monitors carbonate contributions to Roman-type ultrapotassic magmas. Contrib Mineral Petrol DOI 10.1007/s00410-004-0602-2Google Scholar
  9. De Paolo DJ (1981) Trace element and isotopic effects of combined wall-rock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202CrossRefGoogle Scholar
  10. De Rita D, Faccenna C, Funiciello R, Rosa C (1995a) Stratigraphy and volcano-tectonics. In: Trigila R (ed) The volcano of the Alban Hills. Università degli Studi di Roma “La Sapienza”, Rome, Italy, pp 33–71Google Scholar
  11. De Rita D, Giordano G, Rosa C, Sheridan MF (1995b) Volcanic hazard at the Alban Hills and computer simulations. In: Trigila R (ed) The volcano of the Alban Hills. Università degli Studi di Roma “La Sapienza”, Rome, Italy, pp 267–283Google Scholar
  12. De Rita D, Funiciello R, Parotto M (1988) Carta geologica del Complesso vulcanico dei Colli Albani, Progetto Finalizzato ‘Geodinamica’, C.N.R., Rome, ItalyGoogle Scholar
  13. Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O content in silicic glasses. Am Mineral 80:319–328Google Scholar
  14. Di Battistini G, Montanini A, Vernia L, Bargossi GM, Castorina F (1998) Petrology and geochemistry of ultrapotassic rocks from the Montefiascone Volcanic complex (Central Italy): magmatic evolution and petrogenesis. Lithos 43:169–195CrossRefGoogle Scholar
  15. Doglioni C, Harabaglia P, Merlini S, Mongelli F, Peccerillo A, Piromallo C (1999) Orogens and slabs vs. their direction of subduction. Earth Sci Rev 45:167–20CrossRefGoogle Scholar
  16. Einaudi MT, Meinert LD, Newberry RJ (1981) Skarn deposits. Econ Geol 75th Anniv, pp 317–391Google Scholar
  17. Federico M, Peccerillo A, (2002) Mineral chemistry and petrogenesis of granular ejecta from the Alban Hills volcano (Central Italy). Mineral Petrol 74:223–252CrossRefGoogle Scholar
  18. Federico M, Peccerillo A, Barbieri M, Wu TW (1994) Mineralogical and geochemical study of granular xenoliths from the Alban Hills volcano, Central Italy: bearing on evolutionary processes in potassic magma chambers. Contrib Mineral Petrol 115:384–401CrossRefGoogle Scholar
  19. Ferrara G, Laurenzi MA, Taylor HP Jr, Tonarini S, Turi B (1985) Oxygen and strontium isotope studies of K-rich volcanic rocks from the Alban Hills, Italy. Earth Planet Sci Lett 75:13–28CrossRefGoogle Scholar
  20. Fisher RV, Schmincke HU (1984) Pyroclastic Rocks. Springer, Berlin Heidelberg New York, 472 ppGoogle Scholar
  21. Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth Sci Rev 24:81–134CrossRefGoogle Scholar
  22. Fornaseri M, Scherillo A, Ventriglia U (1963) La regione vulcanica dei Colli Albani. Consiglio Nazionale delle Ricerche, Rome, 561 ppGoogle Scholar
  23. Fornaseri M, Cortesi C (1989) Recenti acquisizioni sull’età del “Peperino”di Albano. Docum Albana II, pp. 7–10Google Scholar
  24. Fornaseri M, Turi B (1969) Carbon and oxygen isotopic composition of carbonates in lavas and ejectites from Alban Hills, Italy. Contrib Mineral Petrol 23:244–256CrossRefGoogle Scholar
  25. Freda C, Gaeta M, Palladino DM, Trigila R (1997) The Villa Senni Eruption (Alban Hills, central Italy): the role of H2O and CO2 on the magma chamber evolution and on the eruptive scenario. J Volcanol Geotherm Res 78A:103–120CrossRefGoogle Scholar
  26. Funiciello R, Giordano G, De Rita D (2003) The Albano maar lake (Colli Albani Volcano, Italy): recent volcanic activity and evidence of pre-Roman Age catastrophic lahar events. J Volcanol Geotherm Res 123:43–61CrossRefGoogle Scholar
  27. Funiciello R, Giordano G, De Rita D, Carapezza ML, Barberi F (2002) L’attività recente del cratere del Lago di Albano di Castelgandolfo. Rend Acc dei Lincei 13:113–143CrossRefGoogle Scholar
  28. Gaeta M (1998) Petrogenetic implications of Ba-sanidine in the Lionato Tuff (Colli Albani Volcanic District, Central Italy). Mineral Mag 62:697–701CrossRefGoogle Scholar
  29. Gaeta M, Fabrizio G, Cavarretta G (2000) F-phlogopites in the Alban Hills Volcanic District (Central Italy): Indications regarding the role of volatiles in magmatic crystallization. J Volcanol Geotherm Res 99:179–193CrossRefGoogle Scholar
  30. Gaeta M, Freda C (2001) Strontian fluoro-magnesiohastingsite in Alban Hills lavas (Central Italy): crystallization conditions. Mineral Mag 65:717–779CrossRefGoogle Scholar
  31. Gaeta M, Freda C, Christensen JN, Dallai L, Marra F, Karner DB, Scarlato P (2005) Evolution of the mantle source region for ultrapotassic magmas of the Alban Hills volcanic district, Central Italy. Lithos doi: 10.1016/j.lithos.2005.05.010Google Scholar
  32. Giordano G, De Rita D, Cas R, Rodani S (2002) Valley pond and ignimbrite veneer deposits in the small-volume phreatomagmatic ‘Peperino Albano’ basic ignimbrite, Lago Albano maar, Colli Albani volcano, Italy: influence of topography. J Volcanol Geotherm Res 118:131–144CrossRefGoogle Scholar
  33. Gittings J (1979) The feldspathoidal alkaline rocks. In: Yoder HS (ed) Evolution of igneous rocks. Princeton University Press, pp 361–390Google Scholar
  34. Gustafson WI (1974) The stability of andradite, hedenbergite, and related minerals in the system Ca-Fe-Si-O-H. J Petrol 15:455–496Google Scholar
  35. Hart SR, Dunn T (1993) Experimental clinopyroxene/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1–8CrossRefGoogle Scholar
  36. Hermes OD, Cornell WC (1981) Quenched crystal mush and associated magma compositions as indicated by intercumulus glasses from Mt. Vesuvius, Italy. J Volcanol Geotherm Res 9:133–149CrossRefGoogle Scholar
  37. Karner DB, Lombardi L, Marra F, Fortini P, Renne PR (2001a) Age of ancient monuments by means of building stone provenance: a case study of the Tullianum, Rome, Italy. J Archaeol Sc 28:387–393CrossRefGoogle Scholar
  38. Karner DB, Marra F, Florindo F, Boschi E (2001b) Pulsed uplift around Rome: evidence for a new phase of volcanic activity? Earth Planet Sci Lett 188:135–148CrossRefGoogle Scholar
  39. Karner DB, Marra F, Renne P (2001c) The History of the Monti Sabatini and Alban Hills Volcanoes: groundwork for assessing volcanic-tectonic hazards for Rome. J Volcanol Geotherm Res 107:185–219CrossRefGoogle Scholar
  40. Karner DB, Renne P (1998) 40Ar/39Ar geochronology of Roman Volcanic Province tephra in the River Tiber valley: age calibration of Middle Pleistocene sea-level changes. Geol Soc Am Bull 110:740–747CrossRefGoogle Scholar
  41. Marra F, Freda C, Scarlato P, Taddeucci J, Karner DB, Renne P, Gaeta M, Palladino DM, Trigila R, Cavarretta G (2003) 40Ar/39Ar Geochronology of the recent phase of activity of the Alban Hills Volcanic District (Rome, Italy): implications for seismic and volcanic hazards. Bull Volcanol 65:227–247CrossRefGoogle Scholar
  42. Marra F, Taddeucci J, Freda C, Marzocchi W, Scarlato P (2004) Eruption recurrence interval of the Alban Hills and coupling with other volcanic districts of the Tyrrhenian margin of Italy: possible tectonic influence and implications for volcanic hazard. Tectonics DOI 10.1029/2003TC001600Google Scholar
  43. McDougall I, Harrison TM (1988) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford Monographs on Geology and Geophysics, 9. Oxford University Press, 212 pGoogle Scholar
  44. Morimoto N et al (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550CrossRefGoogle Scholar
  45. Palladino DM, Gaeta M, Marra F (2001) A large K-foiditic hydromagmatic eruption from the early activity of the Alban Hills Volcanic District (Italy). Bull Volcanol 63:345–359CrossRefGoogle Scholar
  46. Peccerillo A (1985) Roman Comagmatic Province (Central Italy): evidence for subduction-related magma genesis. Geology 13:103–106CrossRefGoogle Scholar
  47. Peccerillo A, Manetti P (1985) The potassium alkaline volcanism of Central-Southern Italy: a review of the data relevant to petrogenesis and geodynamic significance. Trans Geol Soc S Afr 88:379–394Google Scholar
  48. Peccerillo A, Poli G, Tolomeo L (1984) Genesis, evolution and tectonics significance of K-rich volcanics from the Alban Hills (Roman Comagmatic Region) as inferred from trace element geochemistry. Contrib Mineral Petrol 86:230–240CrossRefGoogle Scholar
  49. Perini G, Francalanci L, Davidson JP, Ponticelli S (2004) Evolution and genesis of magmas from Vico Volcano, Central Italy: multiple differentiation pathways and variable parental magmas. J Petrol 45:139–182CrossRefGoogle Scholar
  50. Renne PR, Deckart K, Ernesto M, Féraud G, Piccirillo EM (1996) Age of the Ponta Grossa Dike Swarm (Brazil) and implications for Paraná flood volcanism. Earth Planet Sci Lett 144:199–211CrossRefGoogle Scholar
  51. Renne PR, Swisher CC, Deino AL, Karner DB, Owens T, De Paolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152CrossRefGoogle Scholar
  52. Sharp ZD (1992) In situ laser microprobe techniques for stable isotope analysis. Chem Geol 101:3–19Google Scholar
  53. Soligo M, Tuccimei P, Giordano G, Funiciello R, De Rita D (2003) New U-series dating of a carbonate level underlying the Peperino Albano phreatomagmatic ignimbrite (Colli Albani, Italy). Il Quaternario 16:115–120Google Scholar
  54. Spencer KJ, Lindsley DH (1981) A solution model for coexisting iron-titanium oxides. Am Mineral 66:1189–1201Google Scholar
  55. Steiger RH, Jaeger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  56. Sun SS, McDonough WF (1989) Chemical and isotopic systematic of oceanic basalts: implication for mantle composition and processes. In: Saunders AD, Norry MG (eds) Magmatism in ocean basins. Geol Soc Spec Publ 42:313–345Google Scholar
  57. Tetley N, McDougall I, Heydegger HR (1980) Thermal neutron interferences in the 40Ar/39Ar dating technique. J Geophys Res 85:7201–7205CrossRefGoogle Scholar
  58. Tiepolo M, Bottazzi P, Palenzona M, Vannucci R (2003) A laser probe coupled with ICP-double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb dating of zircon. Can Mineral 41:259–272CrossRefGoogle Scholar
  59. Trigila R, Agosta E, Currado C, De Benedetti AA, Freda C, Gaeta M, Palladino DM, Rosa C (1995) Petrology. In: Trigila R (ed) The volcano of the Alban Hills. Università degli Studi di Roma “La Sapienza”, Rome, pp 95–165Google Scholar
  60. Turi B (1970) Carbon and oxygen isotopic composition of carbonates in limestone blocks and related geodes from the “Black Pozzolans” formation of the Alban Hills. Chem Geol 5:195–205CrossRefGoogle Scholar
  61. van Achterbergh E, Ryan CG, Griffin WL (1999): GLITTER: on-line interactive data reduction for the laser ablation ICP-MS microprobe. Proc 9th Ann V.M. Goldschmidt Conf, Boston, USA, 7215Google Scholar
  62. Vasconcelos P, Brimhall GH, Becker TA, Renne PR (1994) 40Ar/39Ar analysis of supergene jarosite and alunite: Implications to the paleoweathering history of western US and west Africa. Geochim Cosmochim Acta 58:401–420CrossRefGoogle Scholar
  63. Villa IM, Calanchi N, Dinelli E, Lucchini F (1999) Age and evolution of the Albano crater lake (Roman Volcanic Province). Acta Vulcanol 11:305–310Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Carmela Freda
    • 1
    Email author
  • Mario Gaeta
    • 2
  • Daniel B. Karner
    • 3
  • Fabrizio Marra
    • 1
  • Paul R. Renne
    • 4
    • 5
  • Jacopo Taddeucci
    • 1
  • Piergiorgio Scarlato
    • 1
  • John N. Christensen
    • 6
  • Luigi Dallai
    • 7
  1. 1.Istituto Nazionale di Geofisica e VulcanologiaSezione di Sismologia e TettonofisicaRomaItaly
  2. 2.Dipartimento di Scienze della TerraUniversità degli Studi “La Sapienza”RomaItaly
  3. 3.Dept of GeologySonoma State UniversityRohnert ParkUSA
  4. 4.Berkeley Geochronology CenterBerkeleyUSA
  5. 5.Dept of Earth and Planetary ScienceUniversity of CaliforniaBerkeleyUSA
  6. 6.Lawrence Berkeley National LaboratoryBerkeleyUSA
  7. 7.CNR-Istituto di Geologia Ambientale e GeoingegneriaRomeItaly

Personalised recommendations