Bulletin of Volcanology

, Volume 68, Issue 4, pp 313–322 | Cite as

Comparison of COSPEC and two miniature ultraviolet spectrometer systems for SO2 measurements using scattered sunlight

  • Tamar Elias
  • A. Jeff Sutton
  • Clive Oppenheimer
  • Keith A. Horton
  • Harold Garbeil
  • Vitchko Tsanev
  • Andrew J. S. McGonigle
  • Glyn Williams-Jones
Research Article

Abstract

The correlation spectrometer (COSPEC), the principal tool for remote measurements of volcanic SO2, is rapidly being replaced by low-cost, miniature, ultraviolet (UV) spectrometers. We compared two of these new systems with a COSPEC by measuring SO2 column amounts at Kīlauea Volcano, Hawaii. The two systems, one calibrated using in-situ SO2 cells, and the other using a calibrated laboratory reference spectrum, employ similar spectrometer hardware, but different foreoptics and spectral retrieval algorithms. Accuracy, signal-to-noise, retrieval parameters, and precision were investigated for the two configurations of new miniature spectrometer. Measurements included traverses beneath the plumes from the summit and east rift zone of Kīlauea, and testing with calibration cells of known SO2 concentration. The results obtained from the different methods were consistent with each other, with <8% difference in estimated SO2 column amounts up to 800 ppm m. A further comparison between the COSPEC and one of the miniature spectrometer configurations, the ‘FLYSPEC’, spans an eight month period and showed agreement of measured emission rates to within 10% for SO2 column amounts up to 1,600 ppm m. The topic of measuring high SO2 burdens accurately is addressed for the Kīlauea measurements. In comparing the foreoptics, retrieval methods, and resultant implications for data quality, we aim to consolidate the various experiences to date, and improve the application and development of miniature spectrometer systems.

Keywords

Ultraviolet spectroscopy Gas monitoring SO2 emissions Kīlauea volcano COSPEC DOAS FLYSPEC 

References

  1. Bobrowski N, Hönninger G, Galle B, Platt U (2003) Detection of bromine monoxide in a volcanic plume. Nature 423:273–276CrossRefPubMedGoogle Scholar
  2. Doukas MP (2002) A new method for GPS-based wind speed determinations during airborne volcanic plume measurements. US Geol Surv Open-File Rep 02-395, pp 1–13Google Scholar
  3. Edmonds M, Herd RA, Galle B, Oppenheimer CM (2003) Automated, high time-resolution measurements of SO2 flux at Sourfriere Hills Volcano, Montserrat. Bull Volcanol 65: 578–586CrossRefGoogle Scholar
  4. Edner H, Ragnarson S, Svanberg S, Wallinder E, Ferrera R, Cioni R, Raco B, Taddeucci G (1994) Total fluxes of sulfur dioxide from the Italian Volcanoes Etna, Stromboli and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy. J Geophys Res 99:1882–1883CrossRefGoogle Scholar
  5. Elias T, Sutton AJ, Stokes JB, Casadevall TJ (1998) Sulfur dioxide emission rates of Kīlauea Volcano, Hawaii, 1979–1997. US Geol Surv Open-File Rep 98-462, pp 1–41Google Scholar
  6. Galle B, Oppenheimer C, Geyer A, McGonigle AJS, Edmonds M, Horrocks L (2002) A miniaturized ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance. J Volcanol Geotherm Res 119:241–254CrossRefGoogle Scholar
  7. Horton KA, Williams-Jones G, Garbeil H, Mouginis-Mark P, Porter JN, Elias T, Sutton AJ (2005) Real-time measurement of volcanic SO2 emissions: validation of a new UV correlation spectrometer. Bull Volcanol (this issue)Google Scholar
  8. Kazahaya K, Shinohara H, Uto K, Odai M, Nakahori Y, Mori H, Iino H, Miyashita M, Hirabayashi J (2004) Gigantic SO2 emission from Miyakejima volcano, Japan, caused by caldera collapse. Geology 32:425–428CrossRefGoogle Scholar
  9. McGonigle AJS, Oppenheimer C, Hayes AR, Galle B, Edmonds M, Caltabiano T, Salerno G, Burton M, Mather TA (2002) Sulphur dioxide fluxes from Mount Etna, Vulcano, and Stromboli measured with an automated scanning ultraviolet spectrometer. J Geophys Res 108(B9): 245, doi:10.1029/2002JB002261Google Scholar
  10. McGonigle AJS, Oppenheimer C (2003) Optical sensing of volcanic gas and aerosol emissions. In: Oppenheimer C, Pyle DM, Barclay J (eds) Volcanic degassing. Geol Soc, London, pp 149–168Google Scholar
  11. Millán MM, Hoff RM (1978) Remote sensing of air pollutants by correlation spectroscopy- instrumental response characteristics. Atmos Env 12:853–864CrossRefGoogle Scholar
  12. Millán MM (1980) Remote sensing of air pollutants. A study of some atmospheric scattering effects. Atmos Env 14: 1241–1253CrossRefGoogle Scholar
  13. Moffat AJ, Millán MM (1971) The application of optical correlation techniques to the remote sensing of SO2 plumes using skylight. Atmos Env 5:677–690CrossRefGoogle Scholar
  14. O'Dwyer M, Padgett MJ, McGonigle A, Oppenheimer C, Inguaggiato S (2003) Real-time measurement of volcanic H2S and SO2 concentrations by UV spectroscopy. Geophys Res Lett 30(12): 4. doi: 10.1029/2003GL017246. issn: 0094–8276CrossRefGoogle Scholar
  15. Oppenheimer C, McGonigle AJS (2004) Exploiting ground based optical sensing technologies for volcanic gas and aerosol surveillance. Ann Geophys 47: 1455–1470Google Scholar
  16. Perner D, Platt U (1979) Detection of nitrous acid in the atmosphere by differential optical absorption. Geophys Res Lett 7: 1053–1056CrossRefGoogle Scholar
  17. Platt U (1994) Differential optical absorption spectroscopy (DOAS). In: Sigrist MW (ed) Air monitoring by spectroscopic techniques. Chemical Analysis Series, Vol. 127. Wiley, New York, pp 27–84Google Scholar
  18. Stoiber RE, Malinconico LL, Williams SN (1983) Use of the correlation spectrometer at volcanoes. In: Tazieff H, Sabroux JC (eds) Forecasting volcanic events. Elsevier, Amsterdam, pp 425–444Google Scholar
  19. Stoiber RE, Jepsen A (1973) Sulfur dioxide contributions to the atmosphere by volcanoes. Science 182:577–578CrossRefGoogle Scholar
  20. Vandaele AC, Simon PC, Guilmot JM, Carleer M, Colin R (1994) SO2 absorption cross section measurements in the UV using a Fourier transform spectrometer. J Geophys Res 99:25599–25605CrossRefGoogle Scholar
  21. Williams-Jones G, Horton KA, Garbeil H, Mouginis-Mark P, Harris AJL, Elias T, Sutton AJ, (2005) Accurately measuring volcanic plume velocities with multiple UV spectrometers. Bull Volcanol (this issue)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Tamar Elias
    • 1
  • A. Jeff Sutton
    • 1
  • Clive Oppenheimer
    • 2
  • Keith A. Horton
    • 3
  • Harold Garbeil
    • 3
  • Vitchko Tsanev
    • 2
  • Andrew J. S. McGonigle
    • 4
  • Glyn Williams-Jones
    • 5
  1. 1.U.S. Geological SurveyHawaiian Volcano ObservatoryHawaii National ParkUSA
  2. 2.Department of GeographyUniversity of CambridgeCambridge CB2 3ENUK
  3. 3.University of Hawaii at ManoaHIGP, SOESTHonoluluUSA
  4. 4.Department of GeographyUniversity of SheffieldSheffield S10 2TNUK
  5. 5.Department of Earth SciencesSimon Fraser UniversityBritish Columbia V5A 1S6Canada

Personalised recommendations