Bulletin of Volcanology

, Volume 68, Issue 4, pp 323–327 | Cite as

Real-time measurement of volcanic SO2 emissions: validation of a new UV correlation spectrometer (FLYSPEC)

  • Keith A. Horton
  • Glyn Williams-Jones
  • Harold Garbeil
  • Tamar Elias
  • A. Jeff Sutton
  • Peter Mouginis-Mark
  • John N. Porter
  • Steven Clegg
Short Scientific Communication

Abstract

A miniaturized, lightweight and low-cost UV correlation spectrometer, the FLYSPEC, has been developed as an alternative for the COSPEC, which has long been the mainstay for monitoring volcanic sulfur dioxide fluxes. Field experiments have been conducted with the FLYSPEC at diverse volcanic systems, including Masaya (Nicaragua), Poás (Costa Rica), Stromboli, Etna and Vulcano (Italy), Villarica (Chile) and Kilauea (USA). We present here those validation measurements that were made simultaneously with COSPEC at Kilauea between March 2002 and February 2003. These experiments, with source emission rates that ranged from 95 to 1,560 t d−1, showed statistically identical results from both instruments. SO2 path-concentrations ranged from 0 to >1,000 ppm-m with average correlation coefficients greater than r2=0.946. The small size and low cost create the opportunity for FLYSPEC to be used in novel deployment modes that have the potential to revolutionize the manner in which volcanic and industrial monitoring is performed.

Keywords

FLYSPEC Volcanic emissions Ultraviolet correlation spectrometer 

References

  1. Caltabiano T, Guiduzzi G, Leuzzi S, Romano R (1992) Helicopter borne COSPEC SO2 flux measurements. Acta Volcanol 2:95–98Google Scholar
  2. Casadevall TJ, Stokes JB, Greenland LP, Malinconico LL, Casadevall JR, Furukawa BT (1987) SO2 and CO2 emission rates at Kilauea Volcano, 1979–1984. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. US Geol Surv Prof Paper, pp 771–780Google Scholar
  3. Doukas MP (2002) A new method for GPS-based wind speed determinations during airborne volcanic plume measurements. US Geol Surv Open-File Rep 02–395, pp 13Google Scholar
  4. Edmonds M, Herd RA, Galle B, Oppenheimer C (2003) Automated, high time-resolution measurements of SO2 flux at Soufrière Hills Volcano, Montserrat. Bull Volcanol 65:578–586CrossRefGoogle Scholar
  5. Elias T, Sutton AJ, Stokes JB, Casadevall TJ (1998) Sulfur dioxide emission rates of Kilauea Volcano, Hawaii, 1979–1997. US Geol Surv Open-File Rep 98–462, pp 41Google Scholar
  6. Galle B, Oppenheimer C, Geyer A, McGonigle A, Edmonds M, Horrocks L (2002) A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance. J Volcanol Geotherm Res 119:241–254CrossRefGoogle Scholar
  7. Moffat AJ, Millan MM (1971) The applications of optical correlation techniques to the remote sensing of SO2 plumes using sky light. Atmos Environ 5:677–690CrossRefPubMedGoogle Scholar
  8. Platt U (1994) Differential optical absorption spectroscopy (DOAS). In: Sigrist MW (ed) Air monitoring by spectroscopic techniques. Wiley, New York, pp 27–84Google Scholar
  9. Stoiber RE, Jepsen A (1973) Sulfur dioxide contributions to the atmosphere by volcanoes. Science 182:577–578CrossRefGoogle Scholar
  10. Stoiber RE, Malinconico JLL, Williams SN (1983) Use of the correlation spectrometer at volcanoes. In: Tazieff H, Sabroux JC (eds) Forecasting volcanic events. Elsevier, New York, pp 424–444Google Scholar
  11. Stoiber RE, Williams SN, Huebert BJ (1986) Sulfur and halogen gases at Masaya caldera complex, Nicaragua: total flux and variations with time. J Geophys Res 91:12215–12231CrossRefGoogle Scholar
  12. Weibring P, Edner H, Svanberg S, Cecchi G, Pantani L, Ferrara R, Caltabiano T (1998) Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC). Appl Phys B 67:419–426CrossRefGoogle Scholar
  13. Weibring P, Swartling J, Edner H, Svanberg S, Caltabiano T, Condarelli D, Cecchi G, Pantani L (2002) Optical monitoring of volcanic sulphur dioxide emissions: comparison between four different remote-sensing spectroscopic techniques. Opt Las El 37:267–284CrossRefGoogle Scholar
  14. Williams SN, Sturchio NC, Calvache VML, Mendez FR, Londono CA, Garcia PN (1990) Sulfur dioxide from Nevado del Ruiz Volcano, Colombia: total flux and isotopic constraints on its origin. J Volcanol Geotherm Res 42:53–68CrossRefGoogle Scholar
  15. Williams-Jones G, Horton K, Elias T, Garbeil H, Mouginis-Mark P, Sutton AJ, Harris AJL (In Press) Accurately measuring volcanic plume velocity with multiple UV spectrometers. Bull VolcanolGoogle Scholar
  16. Zapata JA, Calvache VML, Cortés JGP, Fischer TP, Garzon VG, Gómez MD, Narváez ML, Ordoñez VM, Ortega EA, Stix J, Torres CR, Williams SN (1997) SO2 fluxes from Galeras Volcano, Colombia, 1989–1995: Progressive degassing and conduit obstruction of a Decade Volcano. J Volcanol Geotherm Res 77:195–208CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Keith A. Horton
    • 1
  • Glyn Williams-Jones
    • 2
  • Harold Garbeil
    • 1
  • Tamar Elias
    • 3
  • A. Jeff Sutton
    • 3
  • Peter Mouginis-Mark
    • 1
  • John N. Porter
    • 1
  • Steven Clegg
    • 4
  1. 1.Hawaii Institute of Geophysics and PlanetologyUniversity of Hawaii at ManoaHonoluluUSA
  2. 2.Department of Earth SciencesSimon Fraser UniversityBurnabyCanada
  3. 3.U. S. Geological SurveyHawaiian Volcano Observatory, Hawaii National ParkHawaiiUSA
  4. 4.Department of GeologyUniversity of Hawai'i at HiloHiloUSA

Personalised recommendations