Bulletin of Volcanology

, Volume 68, Issue 4, pp 328–332 | Cite as

Accurately measuring volcanic plume velocity with multiple UV spectrometers

  • Glyn Williams-Jones
  • Keith A. Horton
  • Tamar Elias
  • Harold Garbeil
  • Peter J. Mouginis-Mark
  • A. Jeff Sutton
  • Andrew J. L. Harris
Short Scientific Communication

Abstract

A fundamental problem with all ground-based remotely sensed measurements of volcanic gas flux is the difficulty in accurately measuring the velocity of the gas plume. Since a representative wind speed and direction are used as proxies for the actual plume velocity, there can be considerable uncertainty in reported gas flux values. Here we present a method that uses at least two time-synchronized simultaneously recording UV spectrometers (FLYSPECs) placed a known distance apart. By analyzing the time varying structure of SO2 concentration signals at each instrument, the plume velocity can accurately be determined. Experiments were conducted on Kīlauea (USA) and Masaya (Nicaragua) volcanoes in March and August 2003 at plume velocities between 1 and 10 m s−1. Concurrent ground-based anemometer measurements differed from FLYSPEC-measured plume speeds by up to 320%. This multi-spectrometer method allows for the accurate remote measurement of plume velocity and can therefore greatly improve the precision of volcanic or industrial gas flux measurements.

Keywords

FLYSPEC Plume velocity Volcanic emissions Ultraviolet correlation spectrometer 

References

  1. CCVG-IAVCEI (2003) Eighth Field Workshop on Volcanic Gases, March 26 to April 1, 2003. In: The Commission on the Chemistry of Volcanic Gases & International Association of Volcanology and Chemistry of the Earth's Interior, Nicaragua and Costa Rica, (http://http://www.iavcei.org/)
  2. Doukas MP (2002) A new method for GPS-based wind speed determinations during airborne volcanic plume measurements. US Geol Surv Open-File Rep 02–395, pp 13Google Scholar
  3. Edmonds M, Herd RA, Galle B, Oppenheimer C (2003) Automated, high time-resolution measurements of SO2 flux at Soufrière Hills Volcano, Montserrat. Bull Volcanol 65:578–586, 10.1007/s00445-003-0286-xCrossRefGoogle Scholar
  4. Elias T, Sutton AJ (2002) Sulfur dioxide emission rates from Kilauea Volcano, Hawai`i, an Update: 1998-2001. US Geol Surv Open-File Rep 02–460, pp 41Google Scholar
  5. Horton K, Williams-Jones G, Garbeil H, Elias T, Sutton AJ, Mouginis-Mark P, Porter JN, Clegg S (2005) Real-time measurement of volcanic SO2 emissions: validation of a new UV correlation spectrometer (FLYSPEC). Bull Volcanol Doi 10.1007/s00445-005-0014-9Google Scholar
  6. Kyle PR, Sybeldon LM, McIntosh WC, Meeker K, Symonds R (1994) Sulfur dioxide emission rates from Mount Erebus, Antarctica. In: Kyle PR (ed) Volcanological and environmental studies of Mount Erebus, Antarctica. American Geophysical Union, Washington, D.C., pp 69–82Google Scholar
  7. Moffat AJ, Millan MM (1971) The applications of optical correlation techniques to the remote sensing of SO2 plumes using sky light. Atmos Environ 5:677–690CrossRefPubMedGoogle Scholar
  8. NOAA (2003) 76679 Aeropuerto Internacional de Mexico, D.F. Observations at 12Z 16 April 2003. National Oceanic and Atmospheric Administration, archived by the Department of Atmospheric Science, University of Wyoming (http://weather.uwyo.edu/cgi-bin/sounding?region= naconf&TYPE=TEXT%3ALIST&YEAR=2003&MONTH= 04=FROM=1612&TO=1612&STNM=76679)
  9. Stoiber RE, Malinconico JLL, Williams SN (1983) Use of the correlation spectrometer at volcanoes. In: Tazieff H, Sabroux JC (eds) Forecasting volcanic events. Elsevier, New York, pp 424–444Google Scholar
  10. Strataridakis CJ, White BR, Greis A (1999) Turbulence measurements for wind-turbine siting on a complex terrain. In: ASME Wind Energy Symposium, Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, Reno, Nevada, p 16Google Scholar
  11. Turner DB (1994) Workbook of atmospheric dispersion estimates: an introduction to dispersion modeling. CRC Press Inc, Boca Raton, Florida, pp 192Google Scholar
  12. Williams-Jones G, Rymer H, Rothery DA (2003) Gravity changes and passive SO2 degassing at the Masaya caldera complex, Nicaragua. J Volcanol Geotherm Res 123:137–160CrossRefGoogle Scholar
  13. Williams-Jones G, Stix J, Heiligmann M, Barquero J, Fernandez E, Duarte-Gonzalez E (2000) A model of degassing and seismicity at Arenal volcano, Costa Rica. J Volcanol Geotherm Res 108:121–139CrossRefGoogle Scholar
  14. WMO (1983) Guide to meteorological instruments and methods of observations. 5th edn. World Meteorological Organization 8, GenevaGoogle Scholar
  15. Zapata JA, Calvache VML, Cortés JGP, Fischer TP, Garzon VG, Gómez MD, Narváez ML, Ordoñez VM, Ortega EA, Stix J, Torres CR, Williams SN (1997) SO2 fluxes from Galeras Volcano, Colombia, 1989-1995: progressive degassing and conduit obstruction of a Decade Volcano. J Volcanol Geotherm Res 77:195–208CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Glyn Williams-Jones
    • 1
  • Keith A. Horton
    • 2
  • Tamar Elias
    • 3
  • Harold Garbeil
    • 2
  • Peter J. Mouginis-Mark
    • 2
  • A. Jeff Sutton
    • 3
  • Andrew J. L. Harris
    • 2
  1. 1.Department of Earth SciencesSimon Fraser UniversityBurnabyCanada
  2. 2.Hawaii Institute of Geophysics and PlanetologyUniversity of Hawaii at ManoaHonoluluUSA
  3. 3.U. S. Geological SurveyHawaiian Volcano Observatory, Hawaii National ParkHawaiiUSA

Personalised recommendations