Bulletin of Volcanology

, Volume 67, Issue 6, pp 557–589 | Cite as

Ubinas: the evolution of the historically most active volcano in southern Peru

  • Jean-Claude ThouretEmail author
  • Marco Rivera
  • Gerhard Wörner
  • Marie-Christine Gerbe
  • Anthony Finizola
  • Michel Fornari
  • Katherine Gonzales
Research Article


Ubinas volcano has had 23 degassing and ashfall episodes since A.D. 1550, making it the historically most active volcano in southern Peru. Based on fieldwork, on interpretation of aerial photographs and satellite images, and on radiometric ages, the eruptive history of Ubinas is divided into two major periods. Ubinas I (Middle Pleistocene >376 ka) is characterized by lava flow activity that formed the lower part of the edifice. This edifice collapsed and resulted in a debris-avalanche deposit distributed as far as 12 km downstream the Rio Ubinas. Non-welded ignimbrites were erupted subsequently and ponded to a thickness of 150 m as far as 7 km south of the summit. These eruptions probably left a small collapse caldera on the summit of Ubinas I. A 100-m-thick sequence of ash-and-pumice flow deposits followed, filling paleo-valleys 6 km from the summit. Ubinas II, 376 ky to present comprises several stages. The summit cone was built by andesite and dacite flows between 376 and 142 ky. A series of domes grew on the southern flank and the largest one was dated at 250 ky; block-and-ash flow deposits from these domes filled the upper Rio Ubinas valley 10 km to the south. The summit caldera was formed between 25 and 9.7 ky. Ash-flow deposits and two Plinian deposits reflect explosive eruptions of more differentiated magmas. A debris-avalanche deposit (about 1.2 km3) formed hummocks at the base of the 1,000-m-high, fractured and unstable south flank before 3.6 ka. Countless explosive events took place inside the summit caldera during the last 9.7 ky. The last Plinian eruption, dated A.D.1000–1160, produced an andesitic pumice-fall deposit, which achieved a thickness of 25 cm 40 km SE of the summit. Minor eruptions since then show phreatomagmatic characteristics and a wide range in composition (mafic to rhyolitic): the events reported since A.D. 1550 include many degassing episodes, four moderate (VEI 2–3) eruptions, and one VEI 3 eruption in A.D. 1667.

Ubinas erupted high-K, calc-alkaline magmas (SiO2=56 to 71%). Magmatic processes include fractional crystallization and mixing of deeply derived mafic andesites in a shallow magma chamber. Parent magmas have been relatively homogeneous through time but reflect variable conditions of deep-crustal assimilation, as shown in the large variations in Sr/Y and LREE/HREE. Depleted HREE and Y values in some lavas, mostly late mafic rocks, suggest contamination of magmas near the base of the >60-km-thick continental crust. The most recently erupted products (mostly scoria) show a wide range in composition and a trend towards more mafic magmas.

Recent eruptions indicate that Ubinas poses a severe threat to at least 5,000 people living in the valley of the Rio Ubinas, and within a 15-km radius of the summit. The threat includes thick tephra falls, phreatomagmatic ejecta, failure of the unstable south flank with subsequent debris avalanches, rain-triggered lahars, and pyroclastic flows. Should Plinian eruptions of the size of the Holocene events recur at Ubinas, tephra fall would affect about one million people living in the Arequipa area 60 km west of the summit.


Andes Ubinas Eruption history Radiometric dating Geochemistry Fractional crystallization Mafic magma Hazards 



This work has been carried out through a cooperation agreement between IRD Institut Français de Recherche pour le Développement and IGP Instituto Geofísico del Perú. We thank O. Macedo, J. Dávila, D. Ramos, R. Pinto and J. C. Gómez, N. Fournier, V. Glock and F. Sortino for their help in the field. The research program has been supported by IRD and the Laboratoire Magmas et Volcans, Université Blaise-Pascal and CNRS in Clermont-Ferrand (France) where M. Rivera carried out a Master Sc. project (1999–2000). G. Hartman and K. Simon (both GZG) are thanked for isotope and ICPMS trace element analyses, respectively. This cooperation was supported financially by a DAAD-PROCOPE programme to JCT and GW as well as by DFG Leibniz award. Géosciences Azur contribution no. 567. Valuable comments provided by Dr. T. Spell, Dr. C. Siebe, and Dr. E. Smith, are greatly acknowledged.

Supplementary material


  1. Allègre CJ, Provost A, Jaupart C (1981) Oscillatory zoning: a pathological case of crystal growth. Nature 294:223–228Google Scholar
  2. Bullard FM (1962) Volcanoes of southern Peru. Bull Volcanol 24:443–453Google Scholar
  3. Barazangi M, Isacks B (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4:686–692Google Scholar
  4. Bourdon B, Wörner G, Zindler A (2000) U-series evidence for crustal involvement and magma residence times in the petrogenesis of Parinacota Volcano, Chile. Contrib Mineral Petrol 139(4):458–469Google Scholar
  5. Davidson JP, de Silva S (2000) Composite volcanoes. In: Sigurdsson H et al (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 663–681Google Scholar
  6. Davidson JP, McMillan NJ, Moorbath S, Wörner G, Harmon RS, Lopez Escobar L (1990) The Nevados de Payachata volcanic region (18°S/69°W, N. Chile) II. Evidence for widespread crustal involvement in Andean magmatism. Contrib Mineral Petrol 105:412–432Google Scholar
  7. de Silva SL, Francis PW (1991) Volcanoes of the Central Andes. Springer, Berlin Heidelberg New York, pp 216Google Scholar
  8. de Silva SL, Davidson JP, Croudace IW, Escobar A (1993) Volcanological and petrological evolution of volcan Tata Sabaya, SW Bolivia. J Volcanol Geotherm Res 55:305–335Google Scholar
  9. Feeley TC, Hacker MD (1995) Intracrustal derivation of Na-rich andesitic and dacitic magmas: an example from volcan Ollagüe, Andean central volcanic zone. J Geol 103:213–225Google Scholar
  10. Finizola A, Sortino F, Lénat JF, Macedo O, Gonzales K, Ramos D (1998) SP studies of hydrothermal systems and structure on Misti and Ubinas volcanoes, south Peru. In: Second International Workshop on Magnetic and EM Methods in Seismology and Volcanology, Chania, Greece (Abstract)Google Scholar
  11. Finizola A, Sortino F, Lénat JF, Valenza M (2002) Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO2 surveys. J Volcanol Geotherm Res 116(1–2):1–18Google Scholar
  12. Finizola A, Sortino F, Lénat JF, Aubert M, Ripepe M, Valenza M (2003) The summit hydrothermal system of Stromboli: new insights from self-potential, temperature, CO2 and fumarolic fluids measurements with structural and monitoring implications. Bull Volcanol 65:486–504Google Scholar
  13. Gerbe MC, Thouret JC (2004) Role of magma mixing in the petrogenesis of lavas erupted through the 1990–1998 explosive activity of the Nevado Sabancaya in southern Peru. Bull Volcanol 66:541–561Google Scholar
  14. Ginibre C, Kronz A, Wörner G (2002) Minor and trace element zoning patterns in volcanic plagioclase: examples for crystal-chemical, compositional and kinetic control and implications for magma chamber processes. Contrib Mineral Petrol 143:300–315Google Scholar
  15. Green TH (1972) Crystallization of calc-alkaline andesite under controlled high-pressure hydrous conditions. Contrib Mineral Petrol 34:150–166Google Scholar
  16. Hantke G, Parodi I (1966) The active volcanoes of Peru. Catalogue of the active volcanoes of the world including solfatara fields, Part XIX, Colombia, Ecuador and Peru. Internat Assoc, Volcanol, Rom 65–73Google Scholar
  17. James ED (1982) A combined O, Sr, Nd, and Pb isotopic and trace element study of crustal contamination in central Andean lavas, I. Local geochemical variations. Earth Planet Sci Lett 57:47–62Google Scholar
  18. Juvigné E, Thouret JC, Gilot E, Gourgaud A, Legros F, Uribe M, Graf K (1997) Etude téphrostratigraphique et bioclimatique du Tardiglaciaire et de l’Holocène de la Laguna Salinas, Pérou méridional. Géogr phys Quat 51(2):219–231Google Scholar
  19. Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bull Volcanol 59:198–218Google Scholar
  20. Mahlburg-Kay S, Mpodozis C, Coira B (1999) Neogene magmatism, tectonism, and mineral deposits of the central Andes (22° to 33° S latitude). In: Skinner BJ (ed) Geology and ore deposits of the central Andes. Soc Econ Geol Spec Publ 7:27–59Google Scholar
  21. Marocco R, del Pino M (1966) Geología del Cuadrángulo de Ichuña. Comisión carta geológica nacional, Bol 14: pp. 57 and 1 colour map (1/100,000 scale)Google Scholar
  22. Morimoto N, Fabries J, Fergusson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Bull Mineral 111:535–550Google Scholar
  23. Nakamura M, Shimakita S (1998) Dissolution origin and syn-entrapment compositional changes of melt inclusions in plagioclase. Earth Planet Sci Lett 161:119–133Google Scholar
  24. NCEP—NCAR (1998) National Center for Environmental Prediction—National Center for Atmospheric Research, Climate Data Assimilation System, Reanalysis Project, monthly mean data from the period 1979–1995.∼jjp/ncap_data.htmlGoogle Scholar
  25. Papike JJ, Cameron KL, Baldwin K (1974) Amphiboles and pyroxenes: characterization of other than quadrilateral components and estimates of ferric iron from microprobe data (Abstract). Geol Soc Am Abstracts with Programs 6:1053–1054Google Scholar
  26. Renne PR, Swisher CC, Deino AL, Karner BD, Owens T, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol, Isotope Geosci Sect 145(1–2):117–152Google Scholar
  27. Rivera M, Thouret JC, Gourgaud A (1998) Ubinas, el volcán más activo del sur del Perú desde 1550: Geología y evaluación de las amenazas volcánicas. Bol Soc Geol Perú 88:53–71Google Scholar
  28. Sébrier M, Soler P (1991) Tectonics and magmatism in the Peruvian Andes from Late Oligocene time to the Present. Geol Soc Am Spec Pap 265:259–277Google Scholar
  29. Seltzer G (1990) Recent glacial history and paleoclimate of the Peruvian-Bolivian Andes. Quat Sci Rev 9:137–152Google Scholar
  30. Simkin T, Siebert L (1994) Volcanoes of the world—a regional directory, gazeteer and chronology of volcanism during the last 10,000 years, 2nd edn. Global Volcanism Program. Smithsonian Institution, Washington, DC pp 348Google Scholar
  31. Singer B, Dungan MA, Layne GD (1995) Textures and Sr, Ba, Mg, Fe, K, and Ti compositional profiles in volcanic plagioclase: clues to the dynamics of calc-alkaline magma chambers. Am Mineral 80:776–798Google Scholar
  32. Steiger RH, Jaeger E (1977) IUGS Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362Google Scholar
  33. Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanics basalts: Implications for mantle composition and processes. Magmatism in the ocean basin. Geol Soc Spec Publ 42:313–345Google Scholar
  34. Thouret JC, Le Pennec JL, Woodman RS Macedo O (1996) Ubinas (Perú), Increased fumarolic activity prompts seismic and other monitoring. Global Volc Network Bull, Smithsonian Institution, Washington, DC 7Google Scholar
  35. Thouret JC, Finizola A, Fornari M, Suni J, Legeley-Padovani A, Frechen M (2001) Geology of El Misti volcano nearby the city of Arequipa, Peru. Geol Soc Am Bull 113(12):1593–1610Google Scholar
  36. Thouret JC, Juvigné E, Gourgaud A, Boivin P, Dávila J (2002) Reconstruction of the A.D. 1600 eruption at Huaynaputina volcano, Peru, based on the correlation of geologic evidence with early Spanish chronicles. J Volcanol Geotherm Res 115(3–4):529–570Google Scholar
  37. Tindle AG, Webb PC (1994) Probe-Amph - a spreadsheet program to classify microprobe-derived amphibole analyses. Comp Geosci 20:1201–1228Google Scholar
  38. Valdivia J (1995) Breve reseña histórica del distrito de Ubinas. Bol consejo de Ubinas, Ubinas, Perú, pp 40Google Scholar
  39. Wörner G, Harmon RS, Davidson J, Moorbath S, Turner D, McMillan N, Nye C, Lopez-Escobar L, Moreno H (1988) The Nevados de Payachata volcanic region (18°S/69°W, N. Chile): I. Geological, geochemical and isotopic observations. Bull Volcanol 50:287–303Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jean-Claude Thouret
    • 1
    Email author
  • Marco Rivera
    • 2
  • Gerhard Wörner
    • 3
  • Marie-Christine Gerbe
    • 4
  • Anthony Finizola
    • 5
  • Michel Fornari
    • 6
  • Katherine Gonzales
    • 7
  1. 1.Laboratoire Magmas et VolcansUniversité Blaise-Pascal et CNRS, OPGCClermont-Fd CedexFrance
  2. 2.INGEMMETDirección de Geología AmbientalLa VictoriaPerú
  3. 3.GZG, Abt. GeochemieUniversität GöttingenGöttingenGermany
  4. 4.Département de Géologie-Pétrologie-GéochimieUniversité Jean Monnet et Laboratoire Magmas et VolcansSaint Etienne CedexFrance
  5. 5.Istituto Nazionale di Geofisica e Vulcanologia (INVG-Palermo)PalermoItaly
  6. 6.IRD, Géosciences AzurUniversité de Nice-Sophia AntipolisNice Cedex 2France
  7. 7.IGP, Instituto Geofísico del PerúRegional ArequipaCaymaPeru

Personalised recommendations