Bulletin of Volcanology

, Volume 67, Issue 2, pp 160–169 | Cite as

Surface area, porosity and water adsorption properties of fine volcanic ash particles

  • Pierre Delmelle
  • Frédéric Villiéras
  • Manuel Pelletier
Research Article


Our understanding on how ash particles in volcanic plumes react with coexisting gases and aerosols is still rudimentary, despite the importance of these reactions in influencing the chemistry and dynamics of a plume. In this study, six samples of fine ash (<100 μm) from different volcanoes were measured for their specific surface area, as, porosity and water adsorption properties with the aim to provide insights into the capacity of silicate ash particles to react with gases, including water vapour. To do so, we performed high-resolution nitrogen and water vapour adsorption/desorption experiments at 77 K and 303 K, respectively. The nitrogen data indicated as values in the range 1.1–2.1 m2/g, except in one case where a as of 10 m2/g was measured. This high value is attributed to incorporation of hydrothermal phases, such as clay minerals, in the ash surface composition. The data also revealed that the ash samples are essentially non-porous, or have a porosity dominated by macropores with widths >500 Å. All the specimens had similar pore size distributions, with a small peak centered around 50 Å. These findings suggest that fine ash particles have relatively undifferentiated surface textures, irrespective of the chemical composition and eruption type. Adsorption isotherms for water vapour revealed that the capacity of the ash samples for water adsorption is systematically larger than predicted from the nitrogen adsorption as values. Enhanced reactivity of the ash surface towards water may result from (i) hydration of bulk ash constituents; (ii) hydration of surface compounds; and/or (iii) hydroxylation of the surface of the ash. The later mechanism may lead to irreversible retention of water. Based on these experiments, we predict that volcanic ash is covered by a complete monolayer of water under ambient atmospheric conditions. In addition, capillary condensation within ash pores should allow for deposition of condensed water on to ash particles before water reaches saturation in the plume. The total mass of water vapour retained by 1 g of fine ash at 0.95 relative water vapour pressure is calculated to be ~10−2 g. Some volcanic implications of this study are discussed.


Volcanic ash Specific surface area Porosity Nitrogen adsorption Water vapour adsorption Volcanic plume 



P.D. gratefully acknowledges the financial support of the Fonds National de la Recherche Scientifique (F.N.R.S.). The authors thank N. Oskarsson (Nordic Volcanic Institute), J.C. Varekamp (Wesleyan University), A. Bernard (Université Libre de Bruxelles) and S. Young (Montserrat Volcano Observatory) who kindly supplied some of the ash samples. C. Horwell and S. Lane provided a critical and constructive review of this paper.


  1. Armienta MA, De la Cruz-Reyna S, Morton O, Cruz O, Ceniceros N (2002) Chemical variations of tephra-fall deposit leachates for three eruptions from Popocatépetl volcano, J Volcanol Geotherm Res 113:61–80Google Scholar
  2. Bacon DP, Sarma RA (1991) Agglomeration of dust in convective clouds initialized by nuclear bursts. Atm Environ 25A:2627–2642.Google Scholar
  3. Bardot F (1998) Les minéraux argileux et leur hétérogénéité superficielle: influence de la nature des cations compensateurs superficiels de l’illite sur les mécanismes d’adsorption de gaz. PhD Thesis, INPL Nancy, France, 230 pGoogle Scholar
  4. Baroghel-Bouny V, Mainguy M, Lassabatere T, Coussy O (1999) Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials. Cem Concr Res 29:1225–1238CrossRefGoogle Scholar
  5. Barrett EP, Joyner LG, Halenda PH (1951) Determination of pore volumes and area distributions in porous substances. I. Computation from nitrogen isotherms. J Amer Chem Soc 73:373–380Google Scholar
  6. Baxter PJ, Bonadonna C, Dupree R, Hards VL, Kohn SC, Murphy MD, Nichols A, Nicholson RA, Norton G, Searl A, Sparks RSJ, Vickers BP (1999) Cristobalite in volcanic ash of the Soufriere Hills Volcano, Montserrat, British West Indies. Science 283:1142–1145CrossRefPubMedGoogle Scholar
  7. Berend I (1991) Les mécanismes d’hydratation de montmorillonites homoioniques pour des pressions relatives inférieures à 0.95. PhD Thesis, INPL Nancy, France, 308 pGoogle Scholar
  8. Berend I, Cases JM, François M, Uriot JP, Michot L, Masion A, Thomas F (1995) Mechanism of adsorption and desorption of water vapour by homoionic montmorillonite: 2. The Li+, Na+, K+, Rb+, and Cs+-exchanged forms. Clays Clay Miner 3:324–336Google Scholar
  9. Bihannic I (1998) Structure et microtexture du gonflement cristallin de la montmorillonite. PhD Thesis, Université d’Orléans, France,175 pGoogle Scholar
  10. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Amer Chem Soc 60:309–319Google Scholar
  11. Cases JM, Berend I, Besson G, François M, Uriot JP, Thomas F, Poirier JE (1992) Mechanism of adsorption and desorption of water vapour by homoionic montmorillonite: 1. The sodium-exchanged form. Langmuir 8:2730–2739Google Scholar
  12. Chamerois M (2000) Interactions entre trisiloxanes fonctionnalisés et surfaces minérales: Application à l’hydrofugation, Ph.D. Thesis, INPL Nancy, France, 210 pGoogle Scholar
  13. Costa DL, Dreher KL (1997) Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environ Health Perspect 105:1053–1060.PubMedGoogle Scholar
  14. de Boer JH, Lippens BC, Linsen BG, Broekhollf JCP, van der Heuvel A, Osinga TJ (1966) The t-curve of multilayer N2-adsorption. J Colloid Interf Sci 21:405–414Google Scholar
  15. Eatough DJ, Caka FM, Farber RJ (1994) The conversion of SO2 to sulfate in the atmosphere. Isr J Chem 34:301–314Google Scholar
  16. Eypert-Blaison C, Sauzeat E, Pelletier M, Michot LJ, Villiéras F, Humbert B (2001) Hydration mechanisms and swelling behaviour of Na-magadiite. Chem Materials 13:1480–1486CrossRefGoogle Scholar
  17. Eypert-Blaison C, Michot LJ, Humbert B, Pelletier M, Villiéras F, d’Espinose de la Caillerie JB (2002) Hydration water and swelling behaviour of magadiite: The H+, Na+, K+, Mg++ and Ca++ exchanged forms. J Phys Chem B 106:730–742.CrossRefGoogle Scholar
  18. Fubini B, Zanetti G, Altilia S, Tiozzo R, Lison D, Saffiotti U (1999) Relationship between surface properties and cellular responses to crystalline silica: studies with heat-treated cristobalite. Chem Res Toxicol 12:737–745CrossRefPubMedGoogle Scholar
  19. Ghio AJ, Devlin RB (2001) Inflammatory lung injury after bronchial instillation of air pollution particles. Am J Respir Crit Care Med 164:704–708.PubMedGoogle Scholar
  20. Gilbert JS, Lane SJ (1994) The origin of accretionary lapilli. Bull Volcanol 56:398–411CrossRefGoogle Scholar
  21. Graf H-F, Langmann B and Feichter J (1998) The contribution of Earth degassing to the atmospheric sulfur budget. Chem Geol 147:131–145CrossRefGoogle Scholar
  22. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, LondonGoogle Scholar
  23. Hagymassy J, Brunaeur S, Mikhail RSh (1969) Pore structure analysis by water vapour adsorption. I. t-curve for water vapour. J Colloid Interf Sci 29:485–491Google Scholar
  24. Heiken G, Wolhetz K (1985) Volcanic Ash. Univ of California Press, Berkely, 246 pGoogle Scholar
  25. Herzog M, Graf H-F, Textor C, Oberhuer JM (1998) The effect of phase changes of water on the development of volcanic plumes. J Volcanol Geotherm Res 87:55–74CrossRefGoogle Scholar
  26. Hetland RB, Schwarze PE, Johansen BV, Myran T, Uthus N, Refsnes M (2001) Silica-induced cytokine release from A549 cells: importance of surface area versus size. Hum Exp Toxicol 20:46–55CrossRefPubMedGoogle Scholar
  27. Horwell CJ, Fenoglio I, Ragnarsdottir KV, Sparks RSJ, Fubini B (2003a) Surface reactivity of volcanic ash from the eruption of Soufrière Hills volcano, Montserrat, West Indies with implications for health hazards. Environ Res 93:202–215CrossRefPubMedGoogle Scholar
  28. Horwell CJ, Sparks RSJ, Brewer TS, Llewellin EW, Williamson BJ (2003b) Characterization of respirable volcanic ash from the Soufrière Hills volcano, Montserrat, with implications for human health hazards. Bull Volcanol, DOI 10.1007/s00445–003–0283–0 Published online: 1 March 2003Google Scholar
  29. IUPAC (1972) Manual of symbols and terminology for physicochemical quantities and units, Appendix 2, Definitions, Terminology, and Symbols in Colloid and Surface Chemistry. Part 1. Pure Appl Chem 31:578–638Google Scholar
  30. Legrand AP, Hommel H, Tuel A, Vidal A, Balard H, Papirer E, Levitz P, Czernichowski M, Erre R, van Damme H, Gallas JP, Hemidy JF, Lavalley JC, Barres O, Burneau A, Grillet Y (1990) Hydroxyls of silica powders. Adv Coll Interf Sci 33:91–330CrossRefGoogle Scholar
  31. Luhr JF, Carmichael ISE, Varekamp JC (1984) The 1982 eruptions of El Chichon Volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices. J Volcanol Geotherm Res 23:69–108CrossRefGoogle Scholar
  32. Mason G (1982) The effect of pore space connectivity on the hysteresis of capillary condensation in adsorption-desorption isotherms. J Colloid Interf Sci 88:36–46Google Scholar
  33. Oskarsson N (1980) The interaction between volcanic gases and tephra: fluorine adhering to tephra of the 1970 Hekla eruption. J Volcanol Geotherm Res 8:251–266CrossRefGoogle Scholar
  34. Papelis C, Wooyong U, Russell, CR, Chapman JB (2003) Measuring the specific surface area of natural and man-made glasses: effects of formation process, morphology, and particle size. Colloids Surf A 215:221–239CrossRefGoogle Scholar
  35. Praharaj T, Powell MA, Hart BR, Tripathy S (2002) Leachability of elements from sub-bituminous coal fly ash from India. Env Int 27:609–615CrossRefGoogle Scholar
  36. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  37. Rose WI (1977) Scavenging of volcanic aerosol by ash: atmospheric and volcanologic implications. Geology 5:621–624Google Scholar
  38. Rose WI, Delene DJ, Schneider DJ, Bluth GJS, Krueger AJ, Sprod I, McKee C, Davies HL, Ernst GGJ (1995) Ice in the Rabaul eruption cloud: implications for volcanic hazard and atmospheric effects. Nature 375:477–479CrossRefGoogle Scholar
  39. Rothenberg SJ (1980) Coal combustion fly ash characterization: adsorption of nitrogen and water. Atm Env 14:445–456CrossRefGoogle Scholar
  40. Rothenberg SJ, Denee PB, Brundle CR, carpenter RL, Seiler FA, Eidson AF, Weissman SH, Fleming CD, Hobbs CH (1988) Surface and elemental properties of Mount St. Helens volcanic ash. Aerosol Sci Technol 9:263–269Google Scholar
  41. Sauzéat E (1998) Composition et microstructure des bétons de poudres réactives. Effets des traitements thermiques et du traitement compressif. PhD Thesis, INPL Nancy, France, 286 p.Google Scholar
  42. Shi C (2001) An overview on the activation of reactivity of natural pozzolans. Can J Civ Eng 28:778–786CrossRefGoogle Scholar
  43. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619Google Scholar
  44. Smithsonian Institution (2000a) Bulletin of the Global Volcanism Network. 25/2Google Scholar
  45. Smithsonian Institution (2000a) Bulletin of the Global Volcanism Network. 25/5Google Scholar
  46. Spadaro FR Lefèvre RA Ausset P (2002) Experimental rapid alteration of basaltic glass: implications for the origin of atmospheric particulates. Geology 30:671–674CrossRefGoogle Scholar
  47. Sparks RSJ Bursik MI Carey SN Gilbert JG Glaze LS Sigurdson H Woods AW (1997) Volcanic plumes. Chichester, John Wiley & Sons, 574 p.Google Scholar
  48. Tabazadeh A, Turco RP (1993) Stratospheric chlorine injection by volcanic eruptions: HCl scavenging and implication for ozone. Science 260:1082–1086Google Scholar
  49. Textor C, Sachs PM, Graf H-F (2003) The 12,990 yr BP Laacher See eruption: estimation of volatile yields and simulation of their fate in the plume. In: Oppenheimer C, Pyle D, Barclay J (eds) Volcanic degassing: Experiments, Models, Observations and Impacts. Geol Soc Spec Pub, London, in pressGoogle Scholar
  50. Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K (2000) Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol 12:1113–1126CrossRefPubMedGoogle Scholar
  51. Tvardovski AV, Fomkin AA, Tarasevich Yu I, Zhukova AI (1997) Hysteresis phenomena in the study of sorptive deformation of sorbents. J Colloid Interf Sci 191:117–119CrossRefGoogle Scholar
  52. Varekamp JC, Luhr JF, Prestegaard KL (1984) The 1982 eruptions of El Chichón volcano (Chiapas, Mexico): character of the eruptions, ash-fall deposits, and gas phase. J Volcanol Geotherm Res 23:39–68CrossRefGoogle Scholar
  53. Villiéras F, Michot LJ, Cases JM, Berend I, Bardot F, François M, Gérard G, Yvon J (1997) Static and dynamic studies of the energetic surface heterogeneity of clay minerals. In: Rudzinsky W, Steele WA, Zgrablich G (eds) Equilibria and dynamics of gas adsorption on heterogeneous solid surfaces. Elsevier, Amsterdam, pp 1–47Google Scholar
  54. Villiéras F, Chamerois M, Bardot F, Michot LJ (2002) Evaluation of wetting properties of powders from low pressure gas adsorption experiments, Volume 2. In Mittal KL (ed) VSP Publishers, ZeistGoogle Scholar
  55. Whitham AG, Sparks RSJ (1986) Pumice. Bull Volcanol 48:209–223Google Scholar
  56. Wohletz KH (1983) Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy and experimental studies. J Volcanol Geotherm Res 17:31–63CrossRefGoogle Scholar
  57. Zimanowski B, Wohletz K, Dellino P, Büttner R (2003) The volcanic ash problem. J Volcanol Geotherm Res 122:1–5CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Pierre Delmelle
    • 1
    • 3
  • Frédéric Villiéras
    • 2
  • Manuel Pelletier
    • 2
  1. 1.Unité des sciences du solUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Laboratoire Environnement et MinéralurgieEcole Nationale Supérieure de Géologie, UMR 7569 INPL & CNRSVandoeuvre-lès-Nancy CedexFrance
  3. 3.Department of Earth & Environmental SciencesUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations