Bulletin of Volcanology

, Volume 67, Issue 4, pp 281–291 | Cite as

Rift zone reorganization through flank instability in ocean island volcanoes: an example from Tenerife, Canary Islands

  • T. R. WalterEmail author
  • V. R. Troll
  • B. Cailleau
  • A. Belousov
  • H.-U. Schmincke
  • F. Amelung
  • P. v.d. Bogaard
Research Article


The relationship between rift zones and flank instability in ocean island volcanoes is often inferred but rarely documented. Our field data, aerial image analysis, and 40Ar/39Ar chronology from Anaga basaltic shield volcano on Tenerife, Canary Islands, support a rift zone—flank instability relationship. A single rift zone dominated the early stage of the Anaga edifice (~6–4.5 Ma). Destabilization of the northern sector led to partial seaward collapse at about ~4.5 Ma, resulting in a giant landslide. The remnant highly fractured northern flank is part of the destabilized sector. A curved rift zone developed within and around this unstable sector between 4.5 and 3.5 Ma. Induced by the dilatation of the curved rift, a further rift-arm developed to the south, generating a three-armed rift system. This evolutionary sequence is supported by elastic dislocation models that illustrate how a curved rift zone accelerates flank instability on one side of a rift, and facilitates dike intrusions on the opposite side. Our study demonstrates a feedback relationship between flank instability and intrusive development, a scenario probably common in ocean island volcanoes. We therefore propose that ocean island rift zones represent geologically unsteady structures that migrate and reorganize in response to volcano flank instability.


Tenerife Rift zone Dike intrusion Volcano flank instability Constructive-destructive feedback mechanism Canary Islands 



S. Krein and S. Münn are thanked for help with the aerial photograph digitalization and laboratory work. The paper benefited from reviews, discussions and comments by B. van Wyk de Vries, T. Druitt and T.H. Hansteen. Financial support was provided by the Deutsche Forschungsgemeinschaft (DFG grant WA 1642 to TRW, and DFG grants Schm 250/72 and Schm 250/77 to HUS), by Trinity College Dublin to VRT, by CSTARS at the University of Miami to BC and FA, and by the Alexander v. Humboldt foundation to AB.


  1. Araña V, Carracedo JC, Fúster JM, Garcia Cacho L (1979) Mapa Geologico de España E 1:25000. Inst Geol Min España (ITGE), MadridGoogle Scholar
  2. Ancochea E, Fúster JM, Ibarrola E, Cendrero A, Hernan F, Cantagrel JM, Jamond C (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. J Volcanol Geotherm Res 44:231–249CrossRefGoogle Scholar
  3. Anderson EM (1951) The dynamics of faulting and dyke formation. Oliver and Boyd, Edinburgh, pp 1–206Google Scholar
  4. Baher S, Thurber C, Roberts K, Rowe C (2003) Relocation of seismicity preceding the 1984 eruption of Mauna Loa Volcano, Hawaii: delineation of a possible failed rift. J Volcanol Geotherm Res 128:327–339CrossRefGoogle Scholar
  5. Borgia A, Delaney P, Denlinger RP (2000) Spreading Volcanoes. Ann Rev Earth Planet Sci 28:539–570CrossRefGoogle Scholar
  6. Carracedo JC (1975) Estudio paleomagnetico de la isla de Tenerife. PhD thesis, Univ Complutense de Madrid, pp 1–265Google Scholar
  7. Carracedo JC (1994) The Canary Islands: an example of structural control on the growth of large oceanic-island volcanoes. J Volcanol Geotherm Res 60:225–241CrossRefGoogle Scholar
  8. Carracedo JC, Badiola ER, Guillou H, de la Nuez J, Perez Torrado FJ (2001) Geology and volcanology of La Palma and El Hierro, Western Canaries. Estudios Geol 57:175–273Google Scholar
  9. Cayol V, Dieterich JH, Okamura AT, Miklius A (2000) High rates of deformation prior to the 1983 Eruption of Kilauea Volcano, Hawaii. Science 288:2343–2346CrossRefGoogle Scholar
  10. Clague DA, Denlinger RP (1994) Role of olivine cumulates in destabilizing the flanks of Hawaiian volcanoes. Bull Volcanol 56:425–434CrossRefGoogle Scholar
  11. Delaney PT, Denlinger R, Lisowski M, Miklius A, Okubo P, Okamura A, Sako MK (1998) Volcanic spreading at Kilauea, 1976–1996. J Geophys Res 103:18003–18023CrossRefGoogle Scholar
  12. Dieterich JH (1988) Growth and persistence of Hawaiian volcanic rift zones. J Geophys Res 93:4258–4270Google Scholar
  13. Duffield WA, Stieltjes L, Varet J (1982) Huge landslide blocks in the growth of Piton de la Fournaise, La Réunion, and Kilauea Volcano, Hawaii. J Volcanol Geotherm Res 12:147–160CrossRefGoogle Scholar
  14. Elsworth D, Voight B (1996) Evaluation of volcano flank instability triggered by dyke intrusion. In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the Earth and other planets. Geol Soc London 110:45–53Google Scholar
  15. Fialko YA, Rubin AM (1999) What controls the along-strike slopes of volcanic rift zones? J Geophys Res 104:20007–20020CrossRefGoogle Scholar
  16. Fiske RS, Jackson ED (1972) Orientation and growth of Hawaiian volcanic rifts: the effect of regional structure and gravitational stresses. Proc R Soc London 329:299–326Google Scholar
  17. Fúster JM, Araña V, Brandle JL, Navarro JM, Alonso U, Aparicio A (1968) Geología y Volcanología de las Islas Canarias: Tenerife. Inst Lucas Mallada, CSIC, Madrid, pp 1–218Google Scholar
  18. Gudmundsson A, Marinoni LB, Marti J (1999) Injection and arrest of dykes: implications for volcanic hazards. J Volcanol Geotherm Res 88:1–13Google Scholar
  19. Hernández-Pacheco A, Rodríguez-Losada JA (1996) Geología y estructura del Arco de Taganana. Rev Soc Geol España 9:169–183Google Scholar
  20. Iverson RM (1995) Can magma-injection and groundwater forces cause massive landslides on Hawaiian volcanoes? J Volcanol Geotherm Res 66:295–308CrossRefGoogle Scholar
  21. Johnson D (1995) Molten core model for Hawaiian rift zones. J Volcanol Geotherm Res 66:27–35CrossRefGoogle Scholar
  22. Lipman PW (1980) The southwest rift zone of Mauna Loa—Implications for structural evolution of Hawaiian volcanoes. Am J Sci 280-A:752–776Google Scholar
  23. Lockwood JP (1995) Mauna Loa eruptive history—the preliminary radiocarbon record, Hawaii. In: Rhodes JM, Lockwood JP (eds) Mauna Loa revealed: structure, composition, history, and hazards. Am Geophys U Monograph 92:81–94Google Scholar
  24. Masson DG, Watts AB, Gee MJR, Urgeles R, Mitchell NC, Le Bas TP, Canals M (2002) Slope failures on the flanks of the western Canary Islands. Earth Sci Rev 57:1–35Google Scholar
  25. Marinoni LB, Gudmundsson A (2000) Dykes, faults and palaeostresses in the Teno and Anaga massifs of Tenerife (Canary Islands) J Volcanol Geotherm Res 103:83–103Google Scholar
  26. McGuire WJ, Pullen AD (1989) Location and orientation of eruptive fissures and feeder-dykes at Mount Etna: influence of gravitational and regional tectonic stress regimes. J Volcanol Geotherm Res 38:325–344CrossRefGoogle Scholar
  27. Merle O, Lénat J-F (2003) Hybrid collapse mechanism at Piton de la Fournaise volcano, Reunion Island, Indian Ocean. J Geophys Res 108, 2166Google Scholar
  28. Mitchell NC, Dade WB, Masson DG (2003) Erosion of the submarine flanks of the Canary Islands. J Geophys Res 108, 6002Google Scholar
  29. Moore JG, Clague DA, Holcomb RT, Lipman PW, Normark WR, Torresan ME (1989) Prodigious submarine landslides on the Hawaiian ridge. J Geophys Res 94:17465–17484Google Scholar
  30. Nakamura K (1980) Why do long rift zones develop in Hawaiian volcanoes: a possible role of thick oceanic sediments. Bull Volcanol Soc Japan 25:255–269Google Scholar
  31. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154Google Scholar
  32. Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82:1018–1040Google Scholar
  33. Owen S, Segall P, Lisowski M (2000) Rapid deformation of Kilauea Volcano: global positioning system measurements between 1990 and 1996. J Geophys Res 105:18983–18998CrossRefGoogle Scholar
  34. Rodríguez-Losada JA, Martinez-Frias J, Bustillo MA, Delgado A, Hernandez-Pacheco A, de la Fuente Krauss JV (2000) The hydrothermally alterated ankaramite basalts of Punta Poyata (Tenerife, Canary Islands). J Volcanol Geotherm Res 103:367–376CrossRefGoogle Scholar
  35. Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits and associated eruptions. J Volcanol Geotherm Res, 22:163–197Google Scholar
  36. Thirlwall MF, Singer BS, Marriner GF (2000) 39Ar–40Ar ages and geochemistry of the basaltic shield stage of Tenerife, Canary Islands, Spain. J Volcanol Geotherm Res 103:247–297CrossRefGoogle Scholar
  37. van Wyk de Vries B, Francis PW (1997) Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading. Nature 387:387–390CrossRefGoogle Scholar
  38. van Wyk de Vries B, Kerle N, Petley D (2000) A sector-collapse forming at Casita volcano, Nicaragua. Geology 28:167–170CrossRefGoogle Scholar
  39. Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides Analysis and Control. National Research Council, Transp Res Board Special Report 176, Washington, DC: pp 11–33Google Scholar
  40. Walker GPL (1992) Coherent intrusion complexes in large basaltic volcanoes; a new structural model. Essays on magmas and other earth fluids; a volume in appreciation of Harris PG, Cox KG, Baker PE. Elsevier 50:41–54Google Scholar
  41. Walter TR, Schmincke H-U (2002) Rifting, recurrent landsliding and Miocene structural reorganization on NW-Tenerife (Canary Islands) Int J Earth Sci 91:615–628Google Scholar
  42. Walter TR (2003) Buttressing and fractional spreading of Tenerife, an experimental approach on the formation of rift zones. Geophys Res Lett 30(6):1296CrossRefGoogle Scholar
  43. Walter TR, Troll VR (2003) Experiments on rift zone formation in unstable volcanic edifices. J Volcanol Geotherm Res 127:107–120CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • T. R. Walter
    • 1
    Email author
  • V. R. Troll
    • 2
  • B. Cailleau
    • 1
  • A. Belousov
    • 3
    • 4
  • H.-U. Schmincke
    • 3
  • F. Amelung
    • 1
  • P. v.d. Bogaard
    • 3
  1. 1.MGG/RSMASUniversity of MiamiMiamiUSA
  2. 2.Dept. of GeologyUniversity of Dublin, Trinity CollegeDublin 2Ireland
  3. 3.GEOMAR ForschungszentrumKiel Germany
  4. 4.Institute of Volcanic Geology and GeochemistryPetropavlovsk-KamchatskyRussia

Personalised recommendations