Bulletin of Volcanology

, Volume 66, Issue 8, pp 703–724

Chronology of Vesuvius’ activity from A.D. 79 to 1631 based on archeomagnetism of lavas and historical sources

  • Claudia Principe
  • Jean Claude Tanguy
  • Simone Arrighi
  • Anna Paiotti
  • Maxime Le Goff
  • Ugo Zoppi
Original Paper

Abstract

The activity of Vesuvius between A.D. 79 and 1631 has been investigated by means of precise archaeomagnetic dating of primary volcanic deposits and taking into account the stratigraphy of lavas and tephra, historical written accounts, archaeological evidence related to the developing urbanisation, and radiocarbon ages. We found that the historical records are highly useful in constraining the timing of the main events, even if the data are often too scarce and imprecise for ascertaining the details of all phases of activity, especially their magnitude and emplacement of all the deposit types. In addition, some eruptions that took place in the 9th and 10th centuries appear to be unnoticed by historians. The archaeomagnetic study involved 26 sites of different lavas and 2 pyroclastic deposits. It shows that within the 15 centuries which elapsed between A.D. 79 and 1631, the effusive activity of Vesuvius clustered in the relatively short period of time between A.D. 787 and 1139 and was followed by a 5-century-long repose period. During this time Vesuvius prepared itself for the violent explosive eruption of 1631. The huge lavas shaping the morphology of the coast occurred largely through parasitic vents located outside the Mount Somma caldera. One of these parasitic vents is located at low elevation, very close to the densely inhabited town of Torre Annunziata. Among the various investigated lavas, a number of which were previously attributed to the 1631 eruption, none is actually younger than the 12th century. Therefore it is definitively concluded that the destructive 1631 event was exclusively explosive.

Keywords:

Archaeomagnetism Historical records Vesuvius A.D. 79–1631 Lavas 

References

  1. Alberti FL (1568) Descrizione di tutta l’Italia. Venezia, L. Degli Avanzi, p 504Google Scholar
  2. Alfano GB (1924) Le eruzioni del Vesuvio tra il 79 ed il 1631 (studio bibliografico). Napoli, Scuola tipografica Pontificia per i figli dei carcerati, p58Google Scholar
  3. Andronico D, Calderoni G, Cioni R, Sbrana A, Sulpizio R, Santacroce R (1995) Geologic map of Somma-Vesuvius Volcano. Per Mineral 64: 77–78Google Scholar
  4. Andronico D, Cioni R, Marianelli P, Santacroce R, Sbrana A, Sulpizio R, (1996a) Introduction to Somma-Vesuvius. In “Vesuvius Decade Volcano” Workshop Handbook; Naples, September 17–22, p. 49Google Scholar
  5. Andronico D, Cioni R, Sulpizio R, (1996b). General stratigraphy of the past 19,000 yrs at Somma-Vesuvius. In “Vesuvius Decade Volcano” Workshop Handbook; Naples, September 17–22, p.21.Google Scholar
  6. Arnò V, Principe C, Rosi M, Santacroce R, Sbrana A, Sheridan MF (1987) Eruptive history. In Somma-Vesuvius, ed. R. Santacroce, CNR Quad Ric Sci 114: 53–103Google Scholar
  7. Arrighi S, Principe C, Rosi M (2001) Violent strombolian and subplinian eruptions at Vesuvius during the post 1631 activity. Bull Volcanol 63: 126–150CrossRefGoogle Scholar
  8. Audunsson H, Levi S (1989) Drilling-induced remanent magnetization in basalt drill cores. Geophys J Int 98:613–622Google Scholar
  9. Baratta M (1897) Il Vesuvio e le sue eruzioni. Dall’anno 79 a.C. al 1869. “Dante Alighieri”, Roma, p. 202.Google Scholar
  10. Barberi F, Principe C, Rosi M, Santacroce R (1995) Scenario eruttivo al Vesuvio nel caso di riattivazione a medio-breve termine. Aggiornamento al 20 gennaio 1995. Internal report National Group for Volcanology, Italian National Researches Council (GNV) – Civil Defence, p. 14Google Scholar
  11. Belkin HE, Kilburn RJ, De Vivo B, (1993) Sampling and major element chemistry of the recent (A.D. 1631–1944) Vesuvius activity. J Volcanol Geotherm Res 58: 273–290CrossRefGoogle Scholar
  12. Belkin HE, De Vivo B, Torok K, Webster JD (1998) Pre-eruptive volatile content, melt-inclusion chemistry, and microthermometry of interplinian Vesuvius lavas (pre-A.D. 1631). J Volcanol Geotherm Res 82: 79–95CrossRefGoogle Scholar
  13. Bellucci F (1998) Nuove conoscenze stratigrafiche sui depositi effusivi ed esplosivi nel sottosuolo dell’area del Somma-Vesuvio. Boll Soc Geol It 117: 385–405Google Scholar
  14. Braccini GC (1632) Dell’incendio fattosi sul Vesuvio a XVI di Dicembre MDCXXXI e delle sue cause ed effetti, con la narrazione di quanto è seguito in esso per tutto marzo 1632. E con la storia di tutti gli altri incendi, nel medesimo monte avvenuti. Napoli, Secondino Roncagliolo, p. 104Google Scholar
  15. Bucur I (1994) The direction of the terrestrial magnetic field in France during the last 21 centuries. Recent progress. Physics of the Earth and Planetary Interiors 87: 95–109Google Scholar
  16. Burri C, Di Girolamo P (1975) Contributo alla conoscenza delle lave della grande eruzione del Vesuvio del 1631. Rend. SIMP, 30: 705–739Google Scholar
  17. Cafarella L, De Santis A, Meloni A (1992) Secular variation in Italy from historical geomagnetic field measurements. Physics of the Earth and Planetary Interiors, 73: 206–221Google Scholar
  18. Carracedo JC, Principe C, Rosi M, Soler V (1993) Time correlation by paleomagnetism of the 1631 eruption of Mount Vesuvius. Volcanological and volcanic hazard implications. J Volcanol Geotherm Res 58: 203–209CrossRefGoogle Scholar
  19. Carta S, Figari R, Sartoris G, Sassi E, Scandone R (1981) A statistical model for Vesuvius and its volcanological implications. Bull Volcanol 44(2): 130–151Google Scholar
  20. Cerbai I, Principe C (1996) Bibliography of Historic Activity on Italian Volcanoes. Institut of Geochronology and Isotope Geology, Italian National Researche Council (IGGI), Internal report n.° 6/96, p. 686Google Scholar
  21. CNR – Progetto Finalizzato Geodinamica, 1986. Geological map of Somma-Vesuvius volcanic complex. Roma, L. SalomoneGoogle Scholar
  22. Delibrias G, Di Paola GM, Rosi M, Santacroce R (1979) La storia eruttiva del complesso vulcanico Somma Vesuvio ricostruita dalle successioni piroclastiche del Monte Somma. Rend. SIMP, 35(1): 411–438Google Scholar
  23. De Seta C, Di Mauro L, Perone M (1980) Ville vesuviane. Milano, Rusconi Immagini, p. 370Google Scholar
  24. Di Girolamo P (1970) Rilevamento petrografico-stratigrafico lungo il margine S-W del Vesuvio. Rend. SIMP, 26: 77–108Google Scholar
  25. Di Vito MA, Sulpizio R, Zanchetta G, Calderoni G (1998) The geology of the South Western Slopes of Somma-Vesuvius, Italy, as inferred by borehole stratigraphies and cores. Acta Vulcanologica, 10 (2): 383–393Google Scholar
  26. Figliuolo B, Marturano A (1998) The eruptions of Vesuvius from the 7th to the 12th centuries. In Volcanoes and History, ed. Nicoletta Morello, Genova, Brigati, 133–156Google Scholar
  27. Fisher RA (1953) Dispersion on a sphere. Proc R Soc London 217 (A): 295–305Google Scholar
  28. Formicola F, Pappalardo U, Rolandi G, Russo F (1990) Archeologia, geologia e vulcanologia nel territorio di Torre del Greco: tre discipline a confronto. PACT, 25, 125–182Google Scholar
  29. Furchheim F (1897) Bibliografia del Vesuvio compilata e corredata di note critiche estratte dai più autorevoli scrittori vesuviani da Federigo Furchheim. Napoli, p.297Google Scholar
  30. Gasparini P, Musella S (1991) Un viaggio al Vesuvio. Napoli, Liguori Editore, p. 307Google Scholar
  31. Genevey A, Gallet Y, Boudon G (2002) Secular variation study from non-welded pyroclastic deposits from Montagne Pelée volcano, Martinique (West Indies). EPSL, 201: 369–382Google Scholar
  32. Gialanella P, Incoronato A, Russo F, Nigro G (1993) Magnetic stratigraphy of Vesuvius products. I - 1631 lavas. J. Volcanol. Geotherm. Res., 58, 211–215Google Scholar
  33. Gialanella P, Incoronato A, Russo F, Sarno P, Di Martino A (1998) Magnetic stratigraphy of Vesuvius products. II—Medieval lavas. Quaternary International, 47–48, 135–138Google Scholar
  34. Girelli A (1994) Napoli dalle origini a Carlo D’Angiò. Milano, Fenice 2000, p. 95Google Scholar
  35. Heiken G (1999) Will Vesuvius erupt? Three million people need to know. Science, 286: 1685–87Google Scholar
  36. Hoblitt RP, Reynolds RL, Larson EE (1985) Suitability of nonwelded pyroclastic-flow deposits for studies of secular variation: A test based on deposits emplaced at Mount St. Helens, Washington, 1n 1980. Geology, 13: 242–245Google Scholar
  37. Hoye GS (1981) Archeomagnetic secular variation record of Mount Vesuvius. Nature, 291: 216–217Google Scholar
  38. Hua Q, Jacobsen GE, Zoppi U, Lawson EM, Williams AA, Smith AM and McGann MJ (2001) Progress in radiocarbon target preparation at the ANTARES AMS centre, Radiocarbon 43(2A): 275–282Google Scholar
  39. Incoronato A _(1996) Magnetic stratigraphy in volcanic area. The experience at Vesuvius. In Palaeomagnetism and tectonics of the Mediterranean Region, edited by A.Morris and D.H. Tarling, Geol Soc Spec Publ 105: 367–371Google Scholar
  40. Incoronato A (1999) Comment on the paper “Some considerations on the state of Vesuvius in the Middle Ages and the precursors of the 1631 eruption” by A. Nazzaro. Annali di Geofis., 42: 137–140Google Scholar
  41. Incoronato A, Angelino A, Romano R, Ferrante A, Sauna R, Vanacore G, Secchione C (2002) Retrieving geomagnetic secular variations from lava flows: evidence from Mount Arso, Etna and Vesuvius (southern Italy). Geophys J Int 149: 724–730CrossRefGoogle Scholar
  42. Johnston-Lavis HJ(1884) The Geology of Monte Somma and Vesuvius, being a study in Vulcanology. Q J Geol Soc London 40: 35–149Google Scholar
  43. Johnston-Lavis HJ (1891a) Geological map of Monte Somma and Vesuvius, 1:10.000, constructed during the years 1880–1888. London, George Philip & Son Google Scholar
  44. Johnston-Lavis HJ (1891b) A short and concise account of the eruptive phenomena & geology of Monte Somma and Vesuvius in explanation of the great geological map of that volcano. London George Philip & Son, 32, p. 8Google Scholar
  45. Joron JL, Metrich N, Rosi M, Santacroce R, Sbrana A (1987) Chemistry and Petrography. In Somma-Vesuvius, ed. R. Santacroce, CNR Quad. Ric. Sci., 114, 105–171Google Scholar
  46. Lauer JP (1978) Creation d’aimantations remanentes de sciage et forage au cours de la prèparation d’echantillons de roche destinès à une ètude palèomagnètique. C R Acad Sci Paris, 287(D): 1–4Google Scholar
  47. Lawson EM, Elliott G, Fallon J, Fink D, Hotchkis MAC, Hua Q, Jacobsen GE, Lee P, Smith AM, Tuniz C, and Zoppi U (2000) AMS at ANTARES – The first 10 years, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms., 172: 95–99Google Scholar
  48. Le Goff M(1975) Inductomètrè à rotation continue pour la mesure des faibles aimantations rèmanentes et induites en magnètisme des roches. Master thesis (in french), CNAM, ParisGoogle Scholar
  49. Le Hon S (1865) Histoire compléte de la grande éruption du Vesuve de 1631, avec la carte au 1/25.000 de toutes les laves de ce volcan depuis le seizieme siecle jusqu’a aujourd’ui. Bruxelles, M. Hayez, pp.64 et Bull Acad Sci Lett Beaux Arts Belg 20: 483–538Google Scholar
  50. Le Hon HS (1866) Carte Topographique des laves du Vesuve, a l’echelle de 1/25.000, 1631–1861, avec la coupe geologique du Rivage Napolitan. Bruxelles et Leipzig, C. Muquardt; Naples, A. DetkenGoogle Scholar
  51. Leone A (1514) De Nola opusculum. Venetiis, Rubri Joannis, p. 210Google Scholar
  52. Lirer, L., Vinci, A., Alberico, I., Gifuni, T., Bellucci, F., Petrosino, P., Tinteri, R., 2001. Occurrence of inter-eruption debris flow and hyperconcentrated flood-flos deposits on Vesuvio volcano, Italy. Sedimentary Geol 139: 151–167Google Scholar
  53. Masculo GB (1633) De incendio Vesuvii excitato XVLJ Kal. Ianuar anno trigesimo seculi decimo septimi, libri X cum cronologia superiorum incendiorum ephemeride ultimi. Napoli, Secondino Roncagliolo, p. 350Google Scholar
  54. Mastrolorenzo G, Palladino DM, Vecchio G, Taddeucci J (2002) The 472 A.D. Pollena eruption of Somma-Vesuvius (Italy) and its environmental impact at the end of the Roman Empire. J Volcanol Geotherm Res 113:19–36CrossRefGoogle Scholar
  55. Melilli A (1996) Tefrostratigrafia dell’attività eruttiva del Vesuvio compresa fra il 1631 ed il 1944: caratteri fenomenologici. Unpublished thesis, p.330 Google Scholar
  56. Meo F, Russo S (1997) Torre Annunziata, uomini e fatti. Torre Annunziata, D’Amelio, p.223Google Scholar
  57. Mook WG, Streurman HJ (1983) Physical and chemical aspects of radiocarbon dating. The Proceedings of the First International Symposium on 14C and Archaeology. In: Mook, W.G., Waterbolk, H.T. (Eds.), PACT, 8: 31–55Google Scholar
  58. Mormile G (1632) L’incendio del Vesuvio, e delle straggi, e rovine, che ha fatto nè tempi antichi e moderni, infine a 3 di marzo 1631, con nota di tutte le relazioni stampate fino ad oggi del Vesuvio, raccolte da Vincenzo Bove. Napoli, Egidio Longo, p. 48Google Scholar
  59. Nazzaro A (1998) Some considerations on the state of Vesuvius in the Middle Ages and the precursors of the 1631 eruption. Annali di Geofisica 41(4): 555–565Google Scholar
  60. Niklaus ThR, Bonani G, Simonius M, Suter M, Wölfli W (1992) CalibETH: an interactive computer program for the calibration of radiocarbon dates. Radiocarbon 34: 482–492Google Scholar
  61. Orlandi G _(1631) Dell’incendio del Monte di Somma. Compita relazione e di quanto è succeduto insino ad hoggi. Napoli, Lazzaro Scoriggio, p. 15Google Scholar
  62. Paiotti A (2000) Archeomagnetismo di lave vesuviane: l’attività tra il 79 ed il 1631. Unpublished thesis, p. 126 Google Scholar
  63. Penta F, Del Vecchio S (1963) Lave vesuviane dei principali centri estrattivi. Napoli, Fondazione politecnica del mezzogiorno d’Italia, p. 108Google Scholar
  64. Pighius SV (1587) Hercules Prodicius seu Principiis juventutis vita et peregrinatio. Antuerpiae, Cristoforo Plautinus, p. 653Google Scholar
  65. Preusse P (1931) Considerations sur la forme du Vesuve et son activité dans l’antiquité. Bull Volcanol 27–30, 11–23Google Scholar
  66. Principe C (1979) Le eruzioni storiche del Vesuvio: riesame critico, studio petrologico dei prodotti e implicazioni vulcanologiche. Unpublished Thesis, University os Pisa, p. 123Google Scholar
  67. Principe C (2003) Cronologia dell’attività del Vesuvio fra il 79 A.D. ed il 1631. Submitted to Archivio storico delle province napoletaneGoogle Scholar
  68. Principe C, Rosi M, Santacroce R, Sbrana A (1987) Explanatory notes to the geological map. In Somma-Vesuvius, ed R. Santacroce, CNR Quad. Ric. Sci., 114, 11–52Google Scholar
  69. Principe C, Giosa P, Cerbai I, Crocetti S, Franceschini F, Marini L, Gambardella B, Buettner A, Rosi M (2003) A dynamic model for the 1631 Vesuvius eruption. Geophysical Research Abstracts, Vol.5, 05432Google Scholar
  70. Raia F, Webster JD, De Vivo B (2000) Pre-eruptive volatiles contents of Vesuvius magmas : constraints on eruptive history and behavior. I – The medieval and modern interplinian sctivities. Eur J Mineral 12: 179–193Google Scholar
  71. Raimondo R (1994) Itinerari torresi e cronistoria del Vesuvio. III ed., Ercolano, La Buona Stampa, p. 505Google Scholar
  72. Raimondo R (1985) Uomini e fatti dell’antica Torre del Greco, opera postuma. Ercolano, La Buona Stampa, p. 587Google Scholar
  73. Rolandi G, Russo F (1989) Contributo alla conoscenza dell’attività storica del Vesuvio: dati stratigrafici e vulcanologici nel settore meridionale tra Torre del Greco, località Villa Inglese e Torre Annunziata (Campania). Boll Soc Geol It 108: 521–536Google Scholar
  74. Rolandi G, Barrella AM, Borrelli A (1993) The 1631 eruption of Vesuvius. J Volcanol Geotherm Res 58: 183–201CrossRefGoogle Scholar
  75. Rolandi G, Petrosino P, Geehin J (1998). The interplinian activity at Somma-Vesuvius in the last 3500 years. J Volcanol Geotherm Res 82: 19–52Google Scholar
  76. Rosi M, Santacroce R (1983) The AD 472 “Pollena” eruption: volcanologic and petrological data for this poorly-known, Plinian-type event at Vesuvius. J Volcanol Geotherm Res 17: 249–271Google Scholar
  77. Rosi M, Principe C, Vecci R (1993) The 1631 eruption of Vesuvius reconstructed from the review of chronicles and study of deposits. J Vulcanol Geotherm Res 58: 151–182CrossRefGoogle Scholar
  78. Schottus A (1655) Itinerarium italiae. Amstedolami, Jansson (cited by Alfano,1924, pg. 36)Google Scholar
  79. Sorrentino I (1734) Istoria del Monte Vesuvio. Divisata in due libri. Napoli, Giuseppe Severini, p. 228Google Scholar
  80. Stothers BR, Rampino RM (1983) Volcanic Eruptions in the Mediterranean before A.D. 630 from written and archaeological sources. J Geophys Res 88: 6357–6371Google Scholar
  81. Stuiver M (1983) Business meeting: international agreements and the use of the new oxalic acid standard. Radiocarbon, 25(2): 793–795Google Scholar
  82. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, Van der Plicht J, Spurk M (1998) INTCL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon, 40(3): 1041–1083Google Scholar
  83. Tanguy JC, Bucur I, Thompson JFC (1985) Geomagnetic secular variation in Sicily and revised ages of historic lavas from Mount Etna. Nature, 318: 453–455Google Scholar
  84. Tanguy JC, Le Goff M, Chillemi V, Paliotti A, Principe C, La Delfa S, Patanè G (1999) Secular variations of the geomagnetic field direction recorded in lavas from Etna and Vesuvius during the last two millennia. C R Acad Sci Paris Earth & Planetary Sciences 329: 557–564Google Scholar
  85. Tanguy JC, Le Goff M, Principe C, Arrighi S, Chillemi V, Paiotti A, La Delfa S, Patanè G (2003) Archaeomagnetic dating of Mediterranean volcanics of the last 2100 years. Validity and limits. EPSL 6640(2003): 1–14Google Scholar
  86. Thellier E (1981) Sur la direction du champ magnetique terrestre, en France, durant les deux derniers millenaires. Phys Earth Planet Inter 24: 89–132Google Scholar
  87. Vittozzi P, Gasparini P (1965) Datazioni di lave vesuviane. Geof. Meteor., XIV, 3–4Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Claudia Principe
    • 1
  • Jean Claude Tanguy
    • 2
  • Simone Arrighi
    • 1
  • Anna Paiotti
    • 3
  • Maxime Le Goff
    • 2
  • Ugo Zoppi
    • 4
  1. 1.Istituto di Geoscienze e Georisorse (IGG) CNRPisaItaly
  2. 2.University of Paris 6 and Institut de Physique du Globe de ParisSt. Maur des Fosses CedexFrance
  3. 3.Forte dei MarmiItaly
  4. 4.ANSTO – environmentMenai Australia

Personalised recommendations