Advertisement

Oecologia

, Volume 123, Issue 4, pp 535–542 | Cite as

Feeding ecology and emergence production of annual cicadas (Homoptera: Cicadidae) in tallgrass prairie

  • M.A. Callaham Jr
  • M. R. Whiles
  • C. K. Meyer
  • B. L. Brock
  • R. E. Charlton

Abstract 

The emergence phenology and feeding ecology of annual cicadas in tallgrass prairie are poorly documented. However, these large insects are abundant, and their annual emergence represents a potentially important flux of energy and nutrients from belowground to aboveground. We conducted a study at Konza Prairie Research Natural Area in eastern Kansas to characterize and quantify cicada emergence and associated energy and nutrient fluxes. We established emergence trap transects in three habitat types (upland prairie, lowland prairie, and riparian forest), and collected cicadas every 3 days from May to September. A subset of trapped cicadas was used for species- and sex-specific mass, nutrient, and stable isotope analyses. Five species were trapped during the study, of which three were dominant. Cicadetta calliope and Tibicen aurifera exhibited significantly higher emergence production in upland prairie than in lowland prairie, and were not captured in forested sites at all. T. dorsata emerged from all three habitat types, and though not significant, showed a trend of greater abundance in lowland grasslands. Two less abundant species, T. pruinosa and T. lyricen, emerged exclusively from forested habitats. Nitrogen fluxes associated with total cicada emergence were estimated to be ∼4 kg N ha–1 year–1 in both grassland habitats, and 1.01 kg N ha–1 year–1 in forested sites. Results of stable isotope analyses showed clear patterns of resource partitioning among dominant cicada species emerging from grassland sites. T. aurifera and C. calliope had δ13C and δ15N signatures indicative of feeding on shallowly rooted C4 plants such as the warm-season grasses dominant in tallgrass prairie ecosystems, whereas T. dorsata signatures suggested preferential feeding on more deeply rooted C3 plants.

Key words Insect emergence Grassland Nutrient flux Resource partitioning Stable isotopes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • M.A. Callaham Jr
    • 1
  • M. R. Whiles
    • 2
  • C. K. Meyer
    • 2
  • B. L. Brock
    • 1
  • R. E. Charlton
    • 2
  1. 1.232 Ackert Hall, Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA e-mail: callaham@ksu.edu Fax: +1-785-5326653US
  2. 2.Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USAUS

Personalised recommendations