Advertisement

Oecologia

pp 1–10 | Cite as

Population projections of an endangered cactus suggest little impact of climate change

  • Eugenio Larios
  • Edgar J. GonzálezEmail author
  • Philip C. Rosen
  • Ami Pate
  • Peter Holm
Population ecology – original research
  • 29 Downloads

Abstract

Population projections coupled with downscaled climate projections are a powerful tool that allows predicting future population dynamics of vulnerable plants in the face of a changing climate. Traditional approaches used to predict the vulnerability of plants to climate change (e.g. species distribution models) fail to mechanistically describe the basis of a population’s dynamics and thus cannot be expected to correctly predict its temporal trends. In this study, we used a 23-year demographic dataset of the acuña cactus, an endangered species, to predict its population dynamics to the end of the century. We used integral projection models to describe its vital rates and population dynamics in relation to plant volume and key climatic variables. We used the resulting climate-driven IPM along with climatic projections to predict the population growth rates from 1991 to 2099. We found the average population growth rate of this population between 1991 and 2013 to be 0.70 (95% CI 0.61–0.79). This result confirms that the population of acuña cactus has been declining and that this decline is due to demographic structure and climate conditions. However, the projection model also predicts that, up to 2080, the population will remain relatively stable mainly due to the survival of its existing adult individuals. Notwithstanding, the long-term viability of the populations can only be achieved through the recruitment of new individuals.

Keywords

Acuña cactus Climate projections Long-term demography Temperature Precipitation 

Notes

Acknowledgements

The authors thank the Ecological Monitoring Program of Organ Pipe Cactus National Monument and the National Park Service for providing the long-term demographic database and Charlotte Brown, Charles W. Conner, and other NPS staff and volunteers who helped collect data. EL would like to thank Pilar Navas-Parejo for providing help with the figures. The authors thank the Southwest Border Resource Protection Program for funding this study (Cooperative Agreement P16AC01027, Plant demography and vulnerability to climate change at Organ Pipe Cactus National Monument and Pinacate Biosphere Reserve).

Author contribution statement

EL analysed the data and wrote the manuscript; EJG analysed the data and wrote the manuscript; PCR and PH lead fieldwork and analysed data; AP performed fieldwork. All authors contributed critically to the drafts and gave final approval for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2020_4595_MOESM1_ESM.docx (67.4 mb)
Supplementary material 1 (DOCX 69017 kb)

References

  1. Alcorn SM, Kurtz EB (1959) Some factors affecting the germination of seed of the Saguaro Cactus (Carnegiea gigantea). Am J Bot 46:526–529.  https://doi.org/10.2307/2439624 CrossRefGoogle Scholar
  2. Allen PS, Benech-Arnold RL, Batlla D, Bradford KJ (2007) Modelling of seed dormancy. In: Bradford KHN (ed) Seed development, dormancy, and germination, vol 27. Blackwell Publishing Ltd., Oxford, UK, pp 72–112CrossRefGoogle Scholar
  3. Alvarado V, Bradford KJ (2002) A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ 25:1061–1069.  https://doi.org/10.1046/j.1365-3040.2002.00894.x CrossRefGoogle Scholar
  4. Buskirk WH (1981) Status of the Acuña cactus, (Neolloydia erectocentra var. acunensis) at Organ Pipe Cactus National Monument, Arizona: a progress report. Report to the National Park ServiceGoogle Scholar
  5. Bolker BM (2008) Ecological models and data in R. Princeton University Press, PrincetonCrossRefGoogle Scholar
  6. Butler CJ, Wheeler EA, Stabler LB (2012) Distribution of the threatened lace hedgehog cactus (Echinocereus reichenbachii) under various climate change scenarios. J Torrey Bot Soc 139:46–55.  https://doi.org/10.3159/TORREY-D-11-00049.1 CrossRefGoogle Scholar
  7. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:48.  https://doi.org/10.18637/jss.v067.i01 CrossRefGoogle Scholar
  8. Carrillo-Angeles IG, Suzán-Azpiri H, Mandujano MC, Golubov J, Martínez-Ávalos JG (2016) Niche breadth and the implications of climate change in the conservation of the genus Astrophytum (Cactaceae). J Arid Environ 124:310–317.  https://doi.org/10.1016/j.jaridenv.2015.09.001 CrossRefGoogle Scholar
  9. Caswell H (2001) Matrix population models: construction, analysis, and interpretation, 2nd edn. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  10. Christensen NS, Lettenmaier DP (2007) A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. Hydrol Earth Syst Sci 11:1417–1434.  https://doi.org/10.5194/hess-11-1417-2007 CrossRefGoogle Scholar
  11. Clutton-Brock T, Sheldon BC (2010) Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol Evol 25:562–573.  https://doi.org/10.1016/j.tree.2010.08.002 CrossRefPubMedGoogle Scholar
  12. Core Team R (2016) R: a language and environment for statistical computing. R foundation for Statistical Computing, ViennaGoogle Scholar
  13. Dahlgren JP, Ehrlén J (2009) Linking environmental variation to population dynamics of a forest herb. J Ecol 97:666–674.  https://doi.org/10.1111/j.1365-2745.2009.01504.x CrossRefGoogle Scholar
  14. Dalgleish HJ, Koons DN, Hooten MB, Moffet CA, Adler PB (2011) Climate influences the demography of three dominant sagebrush steppe plants. Ecology 92:75–85.  https://doi.org/10.1890/10-0780.1 CrossRefPubMedGoogle Scholar
  15. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58.  https://doi.org/10.1126/science.1200303 CrossRefPubMedGoogle Scholar
  16. Easterling MR, Ellner SP, Dixon PM (2000) Size-specific sensitivity: Applying a new structured population model. Ecology 81:694–708CrossRefGoogle Scholar
  17. Ehrlén J, Morris WF (2015) Predicting changes in the distribution and abundance of species under environmental change. Ecol Lett 18:303–314.  https://doi.org/10.1111/ele.12410 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ehrlén J, Morris WF, Euler T, Dahlgren JP (2016) Advancing environmentally explicit structured population models of plants. J Ecol 104:292–305.  https://doi.org/10.1111/1365-2745.12523 CrossRefGoogle Scholar
  19. Ellner SP, Rees M, William FM, Donald LD (2006) Integral projection models for species with complex demography. Am Nat 167:410–428.  https://doi.org/10.1086/499438 CrossRefPubMedGoogle Scholar
  20. Ellner SP, Childs DZ, Rees M (2016) Data-driven modelling of structured populations: a practical guide to the integral projection model. Springer International Publishing, BerlinCrossRefGoogle Scholar
  21. Ferrer-Cervantes ME, Mendez-Gonzalez ME, Quintana-Ascencio PF, Dorantes A, Dzib G, Duran R (2012) Population dynamics of the cactus Mammillaria gaumeri: an integral projection model approach. Popul Ecol 54:321–334.  https://doi.org/10.1007/s10144-012-0308-7 CrossRefGoogle Scholar
  22. Flesch AD, Rosen PC, Holm P (2017) Long-term changes in abundances of Sonoran Desert lizards reveal complex responses to climatic variation. Glob Change Biol 23:5492–5508.  https://doi.org/10.1111/gcb.13813 CrossRefGoogle Scholar
  23. Gao Y, Leung LR, Salathé EP, Dominguez F, Nijssen B, Lettenmaier DP (2012) Moisture flux convergence in regional and global climate models: Implications for droughts in the southwestern United States under climate change. Geophys Res Lett.  https://doi.org/10.1029/2012gl051560 CrossRefGoogle Scholar
  24. Godínez-Álvarez H, Valverde T, Ortega-Baes P (2003) Demographic trends in the Cactaceae. Bot Rev 69:173–203CrossRefGoogle Scholar
  25. González EJ, Martorell C, Bolker BM (2016) Inverse estimation of integral projection model parameters using time series of population-level data. Methods Ecol Evol 7:147–156.  https://doi.org/10.1111/2041-210X.12519 CrossRefGoogle Scholar
  26. Holm P (2014) Ecological Monitoring Program Report 1997–2005, vol. Chapter 2. Organ Pipe Cactus National Monument, Ajo, ArizonaGoogle Scholar
  27. IPCC (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field CB, Barros DJ, Dokken KJ, Mach MD, Mastrandrea TE, Bilir M, Chatterjee KL, Ebi,YO, Estrada RC, Genova B, Girma ES, Kissel AN, Levy S, MacCracken PR, Mastrandrea, White LL (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  28. Johnson RA (1992) Pollination and reproductive ecology of acuña cactus, Echinomastus erectrocentrus var. acunensis (Cactaceae). Int J Plant Sci 153:400–408CrossRefGoogle Scholar
  29. Kearney MR, Wintle BA, Porter WP (2010) Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv Lett 3:203–213.  https://doi.org/10.1111/j.1755-263X.2010.00097.x CrossRefGoogle Scholar
  30. Maurer EP, Brekke L, Pruitt T, Duffy PB (2007) Fine-resolution climate projections enhance regional climate change impact studies. Eos Trans Am Geophys Union 88:504–504.  https://doi.org/10.1029/2007EO470006 CrossRefGoogle Scholar
  31. Mazzerole MJ (2017) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R Package version pp 2.2–2Google Scholar
  32. Merow C et al (2014) Advancing population ecology with integral projection models: a practical guide. Methods Ecol Evol 5:99–110.  https://doi.org/10.1111/2041-210X.12146 CrossRefGoogle Scholar
  33. Metcalf CJE et al (2015) Statistical modelling of annual variation for inference on stochastic population dynamics using Integral Projection Models. Methods Ecol Evol 6:1007–1017.  https://doi.org/10.1111/2041-210X.12405 CrossRefGoogle Scholar
  34. Munson SM, Webb RH, Belnap J, Andrew Hubbard J, Swann DE, Rutman S (2012) Forecasting climate change impacts to plant community composition in the Sonoran Desert region. Glob Change Biol 18:1083–1095.  https://doi.org/10.1111/j.1365-2486.2011.02598.x CrossRefGoogle Scholar
  35. Nobel PS (1985) Desert succulents. In: Chabot BF, Mooney HA (eds) Physiological ecology of north american plant communities. Springer, Netherlands, pp 181–197CrossRefGoogle Scholar
  36. Overpeck J et al. (2013) Summary for Decision Makers. In: G. Garfin, A. Jardine, R. Merideth, M. Black, LeRoy S (eds) Assessment of Climate Change in the Southwest United States: a report prepared for the National Climate Assessment. Island Press, Washington, DC, pp 1–20Google Scholar
  37. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371.  https://doi.org/10.1046/j.1466-822X.2003.00042.x CrossRefGoogle Scholar
  38. Phillips III AM, Buskirk WH (1982) Status of the Acuña cactus, (Neolloydia erectocentra var. acunensis) and Ajo rock daisy (Perityle ajoensis) at Organ Pipe Cactus National Monument, Arizona. Report to the National Park ServiceGoogle Scholar
  39. Picard N, Chagneau P, Mortier F, Bar-Hen A (2009) Finding confidence limits on population growth rates: bootstrap and analytic methods. Math Biosci 219:23–31.  https://doi.org/10.1016/j.mbs.2009.02.002 CrossRefPubMedGoogle Scholar
  40. R Core Team (2018) R: a language and environment for statistical computing. Computing RFfS. R Core Team, ViennaGoogle Scholar
  41. Reading CJ et al (2010) Are snake populations in widespread decline? Biol Lett.  https://doi.org/10.1098/rsbl.2010.0373 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Reclamation (2013) Downscaled CMIP3 and CMIP5 Climate projections: release of downscaled CMIP5 climate projections, comparison with preceding information, and summary of user needs. U.S. Department of the Interior, Bureau of Reclamation, Technical Service Center, Denver, Colorado, p 116Google Scholar
  43. Rojas-Aréchiga M, Vázquez-Yanes C (2000) Cactus seed germination: a review. J Arid Environ 44:85–104.  https://doi.org/10.1006/jare.1999.0582 CrossRefGoogle Scholar
  44. Rosen PC (2000) A monitoring study of vertebrate community ecology in the northern Sonoran Desert. University of Arizona, Tucson, p 307Google Scholar
  45. Rosen PC, Lowe C (1996) Ecology of the amphibians and reptiles at Organ Pipe Cactus National Monument, Arizona. Cooperative Park Studies Unit, National Biological Service, University of Arizona, Tucson. Tech. Rep. 53., p 136Google Scholar
  46. Ruffner Associates (1995) Special-status plants monitoring protocol for the Ecological Monitoring Program in Organ Pipe Cactus National Monument, Arizona. Organ Pipe Cactus National Monument Ecological Monitoring Program Monitoring Protocol Manual, Special Report No. 11, Cooperative Park Studies Unit. University of Arizona, Tucson, pp 1:1–39Google Scholar
  47. Sala OE et al (2000) global biodiversity scenarios for the year 2100. Science 287:1770–1774.  https://doi.org/10.1126/science.287.5459.1770 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Salguero-Gómez R, Siewert W, Casper BB, Tielbörger K (2012) A demographic approach to study effects of climate change in desert plants. Philos Trans R Soc B 367:3100–3114.  https://doi.org/10.1098/rstb.2012.0074 CrossRefGoogle Scholar
  49. Seager R et al (2007) Model projections of an imminent transition to a more arid climate in Southwestern North America. Science 316:1181–1184.  https://doi.org/10.1126/science.1139601 CrossRefPubMedGoogle Scholar
  50. Shryock DF, Esque TC, Hughes L (2014) Population viability of Pediocactus bradyi (Cactaceae) in a changing climate. Am J Bot 101:1944–1953.  https://doi.org/10.3732/ajb.1400035 CrossRefPubMedGoogle Scholar
  51. Sinervo B et al (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899.  https://doi.org/10.1126/science.1184695 CrossRefPubMedGoogle Scholar
  52. Smith SD, Monson R, Anderson JE (2012) Physiological ecology of north american desert plants. Springer, BerlinGoogle Scholar
  53. Steenbergh WF, Lowe CH (1969) Critical factors during the first years of life of the Saguaro (Cereus giganteus) at Saguaro National Monument, Arizona. Ecology 50:825–834.  https://doi.org/10.2307/1933696 CrossRefGoogle Scholar
  54. Stillman RA, Railsback SF, Giske J, Berger U, Grimm V (2014) Making predictions in a changing world: the benefits of individual-based ecology. Bioscience 65:140–150.  https://doi.org/10.1093/biosci/biu192 CrossRefPubMedPubMedCentralGoogle Scholar
  55. U.S Fish and Wildlife Service (2013) Endangered and threatened wildlife and plants; endangered species status for Echinomastus erectocentrus var. acunensis (Acuna Cactus) and Pediocactus peeblesianus var. fickeiseniae (Fickeisen Plains Cactus) throughout their ranges. 78 FR 60608. In: Service UFW (ed), pp 60603–60662Google Scholar
  56. Vale CG, Brito JC (2015) Desert-adapted species are vulnerable to climate change: insights from the warmest region on Earth. Glob Ecol Conserv 4:369–379.  https://doi.org/10.1016/j.gecco.2015.07.012 CrossRefGoogle Scholar
  57. Zimmerman AD, Parfitt BD (2003) Echinomastus. In: Committee FoNAE (ed) Flora of North America, North of Mexico, vol 3. Springer, New York, pp 356–357Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Ecology, Evolution, and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.Ecología para la Conservación del Gran Desierto, A.C.HermosilloMexico
  3. 3.Departamento de Ecología y Recursos Naturales, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  4. 4.School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonUSA
  5. 5.Organ Pipe Cactus National Monument, National Park ServiceAjoUSA

Personalised recommendations