pp 1–10 | Cite as

Climate and evolutionary history define the phylogenetic diversity of vegetation types in the central region of South America

  • Vanessa Leite RezendeEmail author
  • Vanessa Pontara
  • Marcelo Leandro Bueno
  • Eduardo van den Berg
  • Ary Teixeira de Oliveira-Filho
Ecosystem ecology – original research


In South America the biogeographic history has produced different biomes with different vegetation types and distinct floras. As these vegetation types may diverge in evolutionary histories, we analysed how alpha and beta phylogenetic diversity vary across them and determine the main drivers of variation in phylogenetic diversity. To this end, we compiled a list of 205 sites and 1222 tree species spread over four biomes and eight vegetation types in central South America. For each site we evaluated six measures of evolutionary alpha diversity (species richness, phylogenetic diversity sensu stricto and the standardized effect size of phylogenetic diversity, mean phylogenetic distance and mean nearest taxon distance) and beta diversity (phylogenetic Sorensen’s similarity). We checked the influence of spatial and environmental variables using generalized least squares models. The greatest phylogenetic differentiation was found between west and east of central South America, mainly between the Chaco communities and the other vegetation types, suggesting that species found in this biome come from different lineages, comparing with the others vegetation types. Our results also showed a clustered phylogenetic structure for the Dry Chaco woodlands, which may be associated with harsh environmental conditions. In addition to historical process, climatic conditions are the main drivers shaping phylogenetic patterns among the distinct vegetation types. Understanding patterns of phylogenetic diversity and distribution can greatly improve conservation planning and management since it allows the conservation of unique biome characteristics.


Conservation assessment Neotroptree Lineage diversity Longitudinal gradient Species richness 



V. L. R. and V. P. thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brazil (CAPES) for the Postdoctoral scholarship. E. v. d. B had the support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author contribution statement

V.L.R., V.P. and M.L.B designed the paper; V.L.R. and A.O.F. assembled the database; V.L.R. and V.P. analysed the data; V.L.R., V.P., M.L.B and E.v.d.B. led the writing. All authors read and approved the final work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2019_4561_MOESM1_ESM.docx (231 kb)
Supplementary material 1 (DOCX 231 kb)


  1. Barton K (2018) MuMIn: Multi-model inference. R. package version 1.43.6. Accessed 04 Dec 2018
  2. Bueno ML, Rezende VL, Pontara V, Oliveira-Filho AT (2017) Floristic distributional patterns in a diverse ecotonal area in South America. Plant Ecol 218:1171–1186. CrossRefGoogle Scholar
  3. Bueno ML, Dexter KG, Pennington RT, Pontara V, Neves DM, Ratter JA, Oliveira-Filho AT (2018) The environmental triangle of the Cerrado domain: ecological factors driving shifts in tree species composition between forests and savannas. J Ecol 106:2109–2120. CrossRefGoogle Scholar
  4. Cabrera AL (1976) Regiones Fitogeográficas Argentinas, 2nd edn. Enciclopedia Argentina de Agricultura y Jardineria, Buenos AiresGoogle Scholar
  5. Cadotte MW, Tucker CM (2017) Should environmental filtering be abandoned? Trends Ecol Evol 32:429–437. CrossRefPubMedGoogle Scholar
  6. Callisto M, Goulart M (2005) Invertebrate drift along a longitudinal gradient in a neotropical stream Serra do Cipó National Park, Brazil. Hydrobiologia 539:47–56. CrossRefGoogle Scholar
  7. Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA (2004) Phylogenetic overdispersion in Floridian oak communities. Am Nat 163:823–843. CrossRefPubMedGoogle Scholar
  8. Connolly J, Cadotte MW, Brophy C, Dooley A, Finn J, Kirwan L, Roscher C, Weigelt A (2011) Phylogenetically diverse grasslands are associated with pairwise interspecific processes that increase biomass. Ecology 92:1385–1392. CrossRefPubMedGoogle Scholar
  9. Conord C, Gurevitch J, Fady B (2012) Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin. Ecol Evol 2:2600–2614. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Corbelli JM, Zurita GA, Filloy J, Galvis JP, Vespa NI, Bellocq I (2015) Integrating taxonomic, functional and phylogenetic beta diversities: interactive effects with the biome and land use across taxa. PLoS One 10:1–17. CrossRefGoogle Scholar
  11. Coyle JR, Halliday FW, Lopez BE, Palmquist KA, Wilfahrt PA, Hurlbert AH (2014) Using trait and phylogenetic diversity to evaluate the generality of the stress-dominance hypothesis in eastern North American tree communities. Ecography 37:814–826. CrossRefGoogle Scholar
  12. Crisp MD, Cook LG (2011) Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytol 192:997–1009. CrossRefPubMedGoogle Scholar
  13. Crisp MD, Cook LG (2012) Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? New Phytol 196:681–694. CrossRefPubMedGoogle Scholar
  14. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10. CrossRefGoogle Scholar
  15. Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S, Firth D, Friendly M, Gorjanc, G, Graves S, Heiberger R (2018) Car: companion to applied regression. R. package version 3.0–3. Accessed 10 Dec 2018
  16. Gerhold P, Cahill JF Jr, Winter M, Bartish I, Prinzing A (2015) Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct Ecol 29:600–614. CrossRefGoogle Scholar
  17. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194CrossRefGoogle Scholar
  18. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  19. Honorio-Coronado EN, Dexter KG, Pennington RT, Chave J, Lewis SL, Alexiades MN, Alvarez E, Alves de Oliveira A, Amaral IL, Araujo-Murakami A, Arets EJMM, Aymard GA, Baraloto C, Bonal D, Brienen R, Cerón C, Cornejo Valverde F, Di Fiore A, Farfan-Rios W, Feldpausch TR, Higuchi N, Huamantupa-Chuquimaco I, Laurance SG, Laurance WF, López-Gonzalez G, Marimon BS, Marimon-Junior BH, Monteagudo Mendoza A, Neill D, Palacios Cuenca W, Peñuela Mora MC, Pitman NCA, Prieto A, Quesada CA, Ramirez Angulo H, Rudas A, Ruschel AR, Salinas Revilla N, Salomão RP, Segalin de Andrade A, Silman MR, Spironello W, ter Steege H, Terborgh J, Toledo M, Valenzuela Gamarra L, Vieira ICG, Vilanova Torre E, Vos V, Phillips OL, Fitzpatrick MC (2015) Phylogenetic diversity of Amazonian tree communities. Divers Distrib 21(11):1295–1307CrossRefGoogle Scholar
  20. Jin Y, Qian H (2019) V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42:1–7. CrossRefGoogle Scholar
  21. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. CrossRefGoogle Scholar
  22. Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170:271–283. CrossRefPubMedGoogle Scholar
  23. Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2015) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29:592–599. CrossRefGoogle Scholar
  24. MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385CrossRefGoogle Scholar
  25. Mazel F, Davies TJ, Gallien L, Renaud J, Groussin M, Münkemüller T, Thuiller W (2016) Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics. Ecography 39:913–920. CrossRefPubMedGoogle Scholar
  26. Miazaki AS, Gastauer M, Meira Neto JAA (2015) Environmental severity promotes phylogenetic clustering in campo rupestre vegetation. Acta Bot Bras 29:563–568. CrossRefGoogle Scholar
  27. Morello J (1958) La provincia fitogeográfica del Monte. Opera Lilloana 2:5–155Google Scholar
  28. Muñoz MC, Schaefer HM, Böhning-Gaese K, Schleuning M (2017) Importance of animal and plant traits for fruit removal and seedling recruitment in a tropical forest. Oikos 126:823–832. CrossRefGoogle Scholar
  29. Neves DM, Dexter KG, Pennington RT, Valente ASM, Bueno ML, Eisenlohr PV, Fontes MAL, Miranda PLS, Moreira SN, Rezende VL, Saiter FS, Oliveira-Filho AT (2017) Dissecting a biodiversity hotspot: the importance of environmentally marginal habitats in the Atlantic Semideciduous Forest Domain of South America. Divers Distrib 23:898–909. CrossRefGoogle Scholar
  30. Nori J, Torres R, Lescano JN, Cordier JM, Periago ME, Baldo D (2016) Protected areas and spatial conservation priorities for endemic vertebrates of the Gran Chaco, one of the most threatened ecoregions of the world. Divers Distrib 22:1212–1219. CrossRefGoogle Scholar
  31. Oksanen J, Blanchet FG, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MH, Szoecs E, Wagner H (2019) vegan: Community ecology package. R. package version 2.5. Accessed 12 Jun 2019
  32. Oliveira-Filho AT (2015) Um Sistema de classificação fisionômico-ecológica da vegetação Neotropical. In: Eisenlohr PV, Felfili JM, Melo MMRF, Andrade LA, Meira-Neto JAA (eds) Fitossociologia no Brasil: Métodos e estudos de casos. Editora UFV, Viçosa, pp 452–473Google Scholar
  33. Oliveira-Filho A, Fontes M (2000) Patterns of floristic differentiation among Atlantic semideciduous forests in Southeastern Brazil and the influence of climate. Biotropica 32:793–810.;2 CrossRefGoogle Scholar
  34. Pennington RT, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and quaternary vegetation changes. J Biogeogr 27:261–273. CrossRefGoogle Scholar
  35. Pennington RT, Lavin M, Prado DE, Pendry CT, Pell SK, Butterworth CH (2004) Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both tertiary and quaternary diversification. Philos Trans R Soc Lond B Biol Sci 359:315–338. CrossRefGoogle Scholar
  36. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2017) nlme: Linear and nonlinear mixed effects models. R.package version 3.1–131. Accessed 14 May 2018
  37. Prado DE (1991) A critical evaluation of the floristic links between Chaco and Caatingas vegetation in South America. PhD dissertation, University of St Andrews, St Andrews, UKGoogle Scholar
  38. Prado DE (1993) What is the Gran Chaco vegetation in South America? I. A review. Candollea 48:14–172Google Scholar
  39. Prado DE, Gibbs PE (1993) Patterns of species distributions in the dry seasonal forests of South America. Ann Missouri Bot Gard 80(4):902–927CrossRefGoogle Scholar
  40. Qian H (2001) A comparison of generic endemism of vascular plants between East Asia and North America. Int J Plant Sci 162:191–199. CrossRefGoogle Scholar
  41. Qian H, Chen SH, Zhang JL (2017) Disentangling environmental and spatial effects on phylogenetic structure of angiosperm tree communities in China. Sci Rep 7:5864. CrossRefGoogle Scholar
  42. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  43. R Core Team (2019) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. Accessed 12 Jun 2019
  44. Rezende VL, Bueno ML, Eisenlohr PV, Oliveira-Filho AT (2018) Patterns of tree species variation across southern South America are shaped by environmental factors and historical process. Perspect Plant Ecol Evol Syst 34:10–16. CrossRefGoogle Scholar
  45. Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JÁ, Cunha TJF, Oliveira JB (2013) Sistema brasileiro de classificação de solos. Embrapa, BrasíliaGoogle Scholar
  46. Silva de Miranda PL, Oliveira-Filho AT, Pennington RT, Neves DM, Baker TR, Dexter KG (2018) Using tree species inventories to map biomes and assess their climatic overlaps in lowland tropical South America. Glob Ecol Biogeogr 27:899–912. CrossRefGoogle Scholar
  47. Simberloff DS (1970) Taxonomic diversity of island biotas. Evolution 24:23–47CrossRefGoogle Scholar
  48. Smith TW, Lundholm JT (2010) Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography 33:648–655. CrossRefGoogle Scholar
  49. Swenson NG, Enquist BJ (2009) Opposing assembly mechanisms in a neotropical dry forest: implications for phylogenetic and functional community ecology. Ecology 90:2161–2170. CrossRefPubMedGoogle Scholar
  50. Thieltges DW, Hof C, Borregaard MK, Dehling DM, Brandle M, Brandl R, Poulin R (2011) Range size patterns in European freshwater trematodes. Ecography 34:982–989. CrossRefGoogle Scholar
  51. Tsirogiannis C, Sandel B (2016) Fast computations for measures of phylogenetic beta diversity. PLoS One 11:e0151167. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ulrich W, Fattorini S (2013) Longitudinal gradients in the phylogenetic community structure of European Tenebrionidae (Coleoptera) do not coincide with the major routes of postglacial colonization. Ecography 36:1106–1116. CrossRefGoogle Scholar
  53. Walter H (1985) Vegetation of the earth and ecological systems of the geo-biosphere. Springer, BerlinCrossRefGoogle Scholar
  54. Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155. CrossRefPubMedGoogle Scholar
  55. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Ann Rev Ecol Syst 33(1):475–505CrossRefGoogle Scholar
  56. Zomer RJ, Trabucco A, Bossio DA, van Straaten O, Verchot LV (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126:67–80. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Biologia, Setor de Ecologia e ConservaçãoUniversidade Federal de LavrasLavrasBrazil
  2. 2.Laboratório de BotânicaUniversidade Estadual de Mato Grosso do Sul, Unidade Universitária de Mundo NovoMundo NovoBrazil
  3. 3.Programa de Pós-Graduação em Biologia VegetalUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations