Advertisement

Oecologia

, Volume 191, Issue 4, pp 829–842 | Cite as

Thermal performance responses in free-ranging elasmobranchs depend on habitat use and body size

  • Karissa O. LearEmail author
  • Nicholas M. Whitney
  • David L. Morgan
  • Lauran R. Brewster
  • Jeff M. Whitty
  • Gregg R. Poulakis
  • Rachel M. Scharer
  • Tristan L. Guttridge
  • Adrian C. Gleiss
Physiological ecology – original research

Abstract

Temperature is one of the most influential drivers of physiological performance and behaviour in ectotherms, determining how these animals relate to their ecosystems and their ability to succeed in particular habitats. Here, we analysed the largest set of acceleration data compiled to date for elasmobranchs to examine the relationship between volitional activity and temperature in 252 individuals from 8 species. We calculated activation energies for the thermal performance response in each species and estimated optimum temperatures using an Arrhenius breakpoint analysis, subsequently fitting thermal performance curves to the activity data. Juveniles living in confined nursery habitats not only spent substantially more time above their optimum temperature and at the upper limits of their performance breadths compared to larger, less site-restricted animals, but also showed lower activation energies and broader performance curves. Species or life stages occupying confined habitats featured more generalist behavioural responses to temperature change, whereas wider ranging elasmobranchs were characterised by more specialist behavioural responses. The relationships between the estimated performance regimes and environmental temperature limits suggest that animals in confined habitats, including many juvenile elasmobranchs within nursery habitats, are likely to experience a reduction of performance under a warming climate, although their flatter thermal response will likely dampen this impact. The effect of warming on less site-restricted species is difficult to forecast since three of four species studied here did not reach their optimum temperature in the wild, although their specialist performance characteristics may indicate a more rapid decline should optimum temperatures be exceeded.

Keywords

Accelerometer Biologging Climate change Optimum temperature Performance breadth Performance curve 

Notes

Acknowledgements

Lemon and nurse shark data were collected at Bimini Biological Field Station with the help of S. Gruber, station managers, and many volunteers. Data collection for large coastal sharks was conducted with the help of J. Morris, H. Marshall, A. Andres, and numerous other staff and interns at Mote Marine Laboratory. Juvenile bull shark and largetooth sawfish data were collected by Murdoch University Team Sawfish, in collaboration with the Nyikina-Mangala Rangers. Smalltooth sawfish data were collected by the Florida Fish and Wildlife Conservation Commission’s Sawfish Program under NMFS ESA permit #15802. We thank C. White for assistance with statistical modelling. KOL was supported by an Australian Government Research Training Program Scholarship and the Forrest Research Foundation.

Author contribution statement

KOL and ACG conceived the study design and methodology. KOL carried out the analyses and led the writing of the manuscript with guidance from ACG and NMW. All authors assisted with data collection, contributed to the drafts, and gave approval for publication.

Funding

Data collection was funded by National Science Foundation grants #1156141 and #1156145, NOAA Cooperative Research Program grants #NA13NMF4540056 and #NA15NMF4540102, NOAA Bycatch Reduction Program grants #NA13NMF4720274 and #NA14NMF4720320, a NOAA Species Recovery Grant to Florida (Sect. 6 Program) #NA13NMF4720047, the Australian Research Council (DECRA, Project number 150100321), the Fisheries Society of the British Isles, Australia Pacific Science Foundation, the Waitt Foundation, Western Australian Government State Natural Resource Management Program, and Murdoch University Strategic Research Funds.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2019_4547_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 34 kb)

References

  1. Angert AL, Sheth SN, Paul JR (2011) Incorporating population-level variation in thermal performance into predictions of geographic range shifts. Integr Comp Biol 51:733–750.  https://doi.org/10.1093/icb/icr048 CrossRefPubMedGoogle Scholar
  2. Angilletta MJ (2006) Estimating and comparing thermal performance curves. J Therm Biol 31:541–545.  https://doi.org/10.1016/j.jtherbio.2006.06.002 CrossRefGoogle Scholar
  3. Angilletta MJ, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J Therm Biol 27:249–268.  https://doi.org/10.1016/S0306-4565(01)00094-8 CrossRefGoogle Scholar
  4. Bangley CW, Paramore L, Shiffman DS, Rulifson RA (2018) Increased abundance and nursery habitat use of the bull shark (Carcharhinus leucas) in response to a changing environment in a warm-temperate estuary. Sci Rep 8:6018.  https://doi.org/10.1038/s41598-018-24510-z CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benaglia T, Chauveau D, Hunter D, Young D (2009) mixtools: an R package for analyzing finite mixture models. J Stat Softw 32:1–29.  https://doi.org/10.18637/jss.v032.i06 CrossRefGoogle Scholar
  6. Bernard AM, Feldheim KA, Heithaus MR, Wintner SP, Wetherbee BM, Shivji MS (2016) Global population genetic dynamics of a highly migratory, apex predator shark. Mol Ecol 25:5312–5329.  https://doi.org/10.1111/mec.13845 CrossRefPubMedGoogle Scholar
  7. Bonebrake TC, Boggs CL, Stamberger JA, Deutsch CA, Ehrlich PR (2014) From global change to a butterfly flapping: biophysics and behaviour affect tropical climate change impacts. Proc R Soc B Biol Sci 281:20141264.  https://doi.org/10.1098/rspb.2014.1264 CrossRefGoogle Scholar
  8. Bowler K, Terblanche JS (2008) Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biol Rev 83:339–355.  https://doi.org/10.1111/j.1469-185X.2008.00046.x CrossRefPubMedGoogle Scholar
  9. Brewster LR, Dale JJ, Guttridge TL, Gruber SH, Hansell AC, Elliott M, Cowx IG, Whitney NM, Gleiss AC (2018) Development and application of a machine learning algorithm for classification of elasmobranch behaviour from accelerometry data. Mar Biol.  https://doi.org/10.1007/s00227-018-3318-y CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789.  https://doi.org/10.1890/03-9000 CrossRefGoogle Scholar
  11. Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, Brown C, Bruno JF, Duarte CM, Halpern BS (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–655.  https://doi.org/10.1126/science.1210288 CrossRefPubMedGoogle Scholar
  12. Casselman MT, Anttila K, Farrell AP (2012) Using maximum heart rate as a rapid screening tool to determine optimum temperature for aerobic scope in Pacific salmon Oncorhynchus spp. J Fish Biol 80:358–377.  https://doi.org/10.1111/j.1095-8649.2011.03182.x CrossRefPubMedGoogle Scholar
  13. Castro JI (1996) Biology of the blacktip shark, Carcharhinus limbatus, off the southeastern United States. Bull Mar Sci 59:508–522Google Scholar
  14. Chapman DD, Feldheim KA, Papastamatiou YP, Hueter RE (2015) There and back again: a review of residency and return migrations in sharks, with implications for population structure and management. Ann Rev Mar Sci 7:547–570.  https://doi.org/10.1146/annurev-marine-010814-015730 CrossRefPubMedGoogle Scholar
  15. Chen Z, Anttila K, Wu J, Whitney CK, Hinch SG, Farrell AP (2013) Optimum and maximum temperatures of sockeye salmon (Oncorhynchus nerka) populations hatched at different temperatures. Can J Zool 91:265–274.  https://doi.org/10.1139/cjz-2012-0300 CrossRefGoogle Scholar
  16. Childress ES, Letcher BH (2017) Estimating thermal performance curves from repeated field observations. Ecology 98:1377–1387.  https://doi.org/10.1002/ecy.1801 CrossRefPubMedGoogle Scholar
  17. Cortés E (2002) Incorporating uncertainty into demographic modeling: application to shark populations and their conservation. Conserv Biol 16:1048–1062.  https://doi.org/10.1046/j.1523-1739.2002.00423.x CrossRefGoogle Scholar
  18. Cortés E (2004) Life history patterns, demography, and population dynamics. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, Boca Raton, pp 449–470CrossRefGoogle Scholar
  19. Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc B Biol Sci 205:489–511.  https://doi.org/10.1098/rspb.1979.0081 CrossRefGoogle Scholar
  20. Dell AI, Pawar S, Savage VM (2011) Systematic variation in the temperature dependence of physiological and ecological traits. Proc Natl Acad Sci 108:10591–10596.  https://doi.org/10.1073/pnas.1015178108 CrossRefPubMedGoogle Scholar
  21. Dell AI, Pawar S, Savage VM (2014) Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J Anim Ecol 83:70–84.  https://doi.org/10.1111/1365-2656.12081 CrossRefPubMedGoogle Scholar
  22. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105:6668–6672.  https://doi.org/10.1073/pnas.0709472105 CrossRefPubMedGoogle Scholar
  23. Dowd WW, King FA, Denny MW (2015) Thermal variation, thermal extremes and the physiological performance of individuals. J Exp Biol 218:1956–1967.  https://doi.org/10.1242/jeb.114926 CrossRefPubMedGoogle Scholar
  24. Drymon JM, Powers SP, Dindo J, Dzwonkowski B, Henwood TA (2010) Distributions of sharks across a continental shelf in the northern Gulf of Mexico. Mar Coast Fish 2:440–450.  https://doi.org/10.1577/C09-061.1 CrossRefGoogle Scholar
  25. Elzhov TV, Mullen KM, Spiess A-N, Bolker B (2016) Package ‘minpack. lm’Google Scholar
  26. Farrell AP (2016) Pragmatic perspective on aerobic scope: peaking, plummeting, pejus and apportioning. J Fish Biol 88:322–343.  https://doi.org/10.1111/jfb.12789 CrossRefPubMedGoogle Scholar
  27. Feldheim KA, Gruber SH, DiBattista JD, Babcock EA, Kessel ST, Hendry AP, Pikitch EK, Ashley MV, Chapman DD (2014) Two decades of genetic profiling yields first evidence of natal philopatry and long-term fidelity to parturition sites in sharks. Mol Ecol 23:110–117.  https://doi.org/10.1111/mec.12583 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Feldheim KA, Fields AT, Chapman DD, Scharer RM, Poulakis GR (2017) Insights into reproduction and behavior of the smalltooth sawfish Pristis pectinata. Endang Species Res 34:463–471.  https://doi.org/10.3354/esr00868 CrossRefGoogle Scholar
  29. Ferreira EO, Anttila K, Farrell AP (2014) Thermal optima and tolerance in the eurythermic goldfish (Carassius auratus): relationships between whole-animal aerobic capacity and maximum heart rate. Physiol Biochem Zool 87:599–611.  https://doi.org/10.1086/677317 CrossRefPubMedGoogle Scholar
  30. Gannon R, Taylor MD, Suther IM, Gray CA, van der Meulen DE, Smith JA, Payne NL (2014) Thermal limitation of performance and biogeography in a free-ranging ectotherm: insights from accelerometry. J Exp Biol 217:3033–3037.  https://doi.org/10.1242/jeb.104455 CrossRefPubMedGoogle Scholar
  31. Gilchrist GW (1995) Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am Nat 146:252–270.  https://doi.org/10.1086/285797 CrossRefGoogle Scholar
  32. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251.  https://doi.org/10.1126/science.1061967 CrossRefPubMedGoogle Scholar
  33. Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH (2002) Effects of size and temperature on developmental time. Nature 417:70–73.  https://doi.org/10.1038/417070a CrossRefPubMedGoogle Scholar
  34. Grace M, Henwood T (1997) Assessment of the distribution and abundance of coastal sharks in the US Gulf of Mexico and eastern seaboard, 1995 and 1996. Mar Fish Rev 59:23–32Google Scholar
  35. Grubbs RD (2010) Ontogenetic shifts in movements and habitat use. In: Carrier JC, Musick JA, Heithaus LI (eds) Sharks and their relatives II: biodiversity, adaptive physiology, and conservation. CRC Press, Boca Raton, pp 319–350CrossRefGoogle Scholar
  36. Gunderson AR, Leal M (2016) A conceptual framework for understanding thermal constraints on ectotherm activity with implications for predicting responses to global change. Ecol Lett 19:111–120.  https://doi.org/10.1111/ele.12552 CrossRefGoogle Scholar
  37. Halsey LG, Green JA, Wilson RP, Frappell PB (2009a) Accelerometry to estimate energy expenditure during activity: best practice with data loggers. Physiol Biochem Zool 82:396–404.  https://doi.org/10.1086/589815 CrossRefPubMedGoogle Scholar
  38. Halsey LG, Shepard ELC, Quintana F, Gomez Laich A, Green JA, Wilson RP (2009b) The relationship between oxygen consumption and body acceleration in a range of species. Comp Biochem Physiol A 152:197–202.  https://doi.org/10.1016/j.cbpa.2008.09.021 CrossRefGoogle Scholar
  39. Helmuth B, Kingsolver JG, Carrington E (2005) Biophysics, physiological ecology, and climate change: does mechanism matter? Annu Rev Physiol 67:177–201.  https://doi.org/10.1146/annurev.physiol.67.040403.105027 CrossRefPubMedGoogle Scholar
  40. Heupel MR, Carlson JK, Simpfendorfer CA (2007) Shark nursery areas: concepts, definition, characterization and assumptions. Mar Ecol Prog Ser 337:287–297.  https://doi.org/10.3354/meps337287 CrossRefGoogle Scholar
  41. Hoffmann AA (2010) Physiological climatic limits in Drosophila: patterns and implications. J Exp Biol 6:870–880.  https://doi.org/10.1242/jeb.037630 CrossRefGoogle Scholar
  42. Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135.  https://doi.org/10.1016/0169-5347(89)90211-5 CrossRefPubMedGoogle Scholar
  43. Huey RB, Stevenson RD (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool 19:357–366.  https://doi.org/10.1093/icb/19.1.357 CrossRefGoogle Scholar
  44. Huey RB, Kearney MR, Krockenberger A, Holtum JAM, Jess M, Williams SE (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology, and adaptation. Philos Trans R Soc B Biol Sci 367:1665–1679.  https://doi.org/10.1098/rstb.2012.0005 CrossRefGoogle Scholar
  45. Irlich UM, Terblanche JS, Blackburn TM, Chown SL (2009) Insect rate-temperature relationships: environmental variation and the metabolic theory of ecology. Am Nat 174:819–835.  https://doi.org/10.1086/647904 CrossRefPubMedGoogle Scholar
  46. Irschick D, Higham T (2016) Animal athletes, an ecological and evolutionary approach. Oxford University PressGoogle Scholar
  47. Kajiura SM, Tellman SL (2016) Quantification of massive seasonal aggregations of blacktip sharks (Carcharhinus limbatus) in Southeast Florida. PLoS One 11:e0150911.  https://doi.org/10.1371/journal.pone.0150911 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kearney K, Shine R, Porter WP (2009) The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc Natl Acad Sci 106:3835–3840.  https://doi.org/10.1073/pnas.0808913106 CrossRefPubMedGoogle Scholar
  49. Kingsolver JG (2009) The well-temperatured biologist. Am Nat 174:755–768.  https://doi.org/10.1086/648310 CrossRefPubMedGoogle Scholar
  50. Klok CJ, Chown SL (2001) Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic kelp fly, Paractora dreuxi (Diptera: Helcomyzidae). J Insect Physiol 47:95–109.  https://doi.org/10.1016/S0022-1910(00)00087-1 CrossRefPubMedGoogle Scholar
  51. Komoroske LM, Connon RE, Lindberg J, Cheng BS, Castillo G, Hasenbein M, Fangue NA (2014) Ontogeny influences sensitivity to climate change stressors in an endangered fish. Conserv Physiol.  https://doi.org/10.1093/conphys/cou008 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Krebs RA, Feder ME, Lee J (1998) Heritability of expression of the 70KD heat-shock protein in Drosophila melanogaster and its relevance to the evolution of thermotolerance. Evolution 52:841–847.  https://doi.org/10.1111/j.1558-5646.1998.tb03708.x CrossRefPubMedGoogle Scholar
  53. Lear KO, Whitney NM (2016) Bringing data to the surface: recovering data loggers for large sample sizes from marine vertebrates. Anim Biotelem 4:12.  https://doi.org/10.1186/s40317-016-0105-8 CrossRefGoogle Scholar
  54. Mollet HF, Cailliet GM (2002) Comparative population demography of elasmobranchs using life history tables, Leslie matrices and stage-based matrix models. Mar Freshw Res 53:503–515.  https://doi.org/10.1071/MF01083 CrossRefGoogle Scholar
  55. Muggeo VM (2008) Segmented: an R package to fit regression models with broken-line relationships. R News 8:20–25Google Scholar
  56. Payne NL, Smith JA, van der Meulen DE, Taylor MD, Watanabe YY, Takahashi A, Marzullo TA, Gray CA, Cadiou G, Suthers IM (2016) Temperature dependence of fish performance in the wild:links with species biogeography and physiological thermal tolerance. Funct Ecol 30:903–912.  https://doi.org/10.1111/1365-2435.12618 CrossRefGoogle Scholar
  57. Payne NL, Meyer CG, Smith JA, Houghton JD, Barnett A, Holmes BJ, Nakamura I, Papastamatiou YP, Royer MA, Coffey DM (2018) Combining abundance and performance data reveals how temperature regulates coastal occurrences and activity of a roaming apex predator. Glob Change Biol 24:1884–1893.  https://doi.org/10.1111/gcb.14088 CrossRefGoogle Scholar
  58. Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915.  https://doi.org/10.1126/science.1111322 CrossRefPubMedGoogle Scholar
  59. Qasem L, Cardew A, Wilson A, Griffiths I, Halsey LG, Shepard ELC, Gleiss AC, Wilson R (2012) Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector? PLoS One 7:e31187.  https://doi.org/10.1371/journal.pone.0031187 CrossRefPubMedPubMedCentralGoogle Scholar
  60. R Core Team (2017) R foundation for statistical computing, Vienna, AustriaGoogle Scholar
  61. Sakamoto KQ, Sato K, Ishizuka M, Watanuki Y, Takahashi A, Daunt F, Wanless S (2009) Can ethograms be automatically generated using body acceleration data from free-ranging birds? PLoS One 4:e5379.  https://doi.org/10.1371/journal.pone.0005379 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Schulte PM, Healy TM, Fangue NA (2011) Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr Comp Biol 51:691–702.  https://doi.org/10.1093/icb/icr097 CrossRefPubMedGoogle Scholar
  63. Shepard ELC, Wilson RP, Halsey LG, Quintana F, Laich AG, Gleiss AC, Liebsch N, Myers AE, Norman B (2008) Derivation of body motion via appropriate smoothing of acceleration data. Aquat Biol 4:235–241.  https://doi.org/10.3354/ab00104 CrossRefGoogle Scholar
  64. Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S, Dong Y, Harley CD, Marshall DJ, Helmuth BS (2016) Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol Lett 19:1372–1385.  https://doi.org/10.1111/ele.12686 CrossRefPubMedGoogle Scholar
  65. Sinervo B, Mendez-De-La-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagrán-Santa Cruz M, Lara-Resendiz R, Martínez-Méndez N, Calderón-Espinosa ML, Meza-Lázaro RN (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899.  https://doi.org/10.1126/science.1184695 CrossRefPubMedGoogle Scholar
  66. Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920.  https://doi.org/10.1242/jeb.037473 CrossRefPubMedGoogle Scholar
  67. Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat Clim Change 2:686–690.  https://doi.org/10.1038/nclimate1539 CrossRefGoogle Scholar
  68. Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK, Longino JT, Huey RB (2014) Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc Natl Acad Sci 111:5610–5615.  https://doi.org/10.1073/pnas.1316145111 CrossRefPubMedGoogle Scholar
  69. Whitmore BM, White CF, Gleiss AC, Whitney NM (2016) A float-release package for recovering data-loggers from wild sharks. J Exp Mar Biol Ecol 475:49–53.  https://doi.org/10.1016/j.jembe.2015.11.002 CrossRefGoogle Scholar
  70. Whitney NM, Pratt HL, Pratt TC, Carrier JC (2010) Identifying shark mating behaviour using three-dimensional acceleration loggers. Endang Species Res 10:71–82.  https://doi.org/10.3354/esr00247 CrossRefGoogle Scholar
  71. Whitney NM, Papastamatiou YP, Gleiss AC (2012) Integrative multisensor tagging: emerging techniques to link elasmobranch behavior, physiology, and ecology. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives, 2nd edn. CRC Press, Boca Raton, pp 265–289CrossRefGoogle Scholar
  72. Whitty JM, Keleher J, Ebner BC, Gleiss AC, Simpfendorfer CA, Morgan DL (2017) Habitat use of a Critically Endangered elasmobranch, the largetooth sawfish Pristis pristis, in an intermittently flowing riverine nursery. Endang Species Res 34:211–227.  https://doi.org/10.3354/esr00837 CrossRefGoogle Scholar
  73. Wilson RS, Husak JF, Halsey LG, Clemente CJ (2015) Predicting the movement speeds of animals in natural environments. Integr Comp Biol 55:1125–1141.  https://doi.org/10.1093/icb/icv106 CrossRefPubMedGoogle Scholar
  74. Winne CT, Keck MB (2005) Intraspecific differences in thermal tolerance of the diamondback watersnake (Nerodia rhombifer): effects of ontogeny, latitude, and sex. Comp Biochem Physiol A 140:141–149.  https://doi.org/10.1016/j.cbpb.2004.11.009 CrossRefGoogle Scholar
  75. Winter JD (1983) Underwater biotelemetry. In: Nielsen LA, Johnson DL (eds) Fisheries techniques. American Fisheries Society, Bethesda, pp 371–395Google Scholar
  76. Woods HA, Dillon ME, Pincebourde S (2015) The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J Therm Biol 54:86–97.  https://doi.org/10.1016/j.jtherbio.2014.10.002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Karissa O. Lear
    • 1
    • 2
    Email author
  • Nicholas M. Whitney
    • 3
  • David L. Morgan
    • 1
  • Lauran R. Brewster
    • 1
    • 4
  • Jeff M. Whitty
    • 1
  • Gregg R. Poulakis
    • 5
  • Rachel M. Scharer
    • 5
  • Tristan L. Guttridge
    • 4
    • 6
  • Adrian C. Gleiss
    • 1
    • 2
  1. 1.Centre for Sustainable Aquatic Ecosystems, Harry Butler InstituteMurdoch UniversityPerthAustralia
  2. 2.Environment and Conservation SciencesMurdoch UniversityPerthAustralia
  3. 3.Anderson Cabot Center for Ocean LifeNew England AquariumBostonUSA
  4. 4.Bimini Biological Field Station FoundationSouth BiminiBahamas
  5. 5.Charlotte Harbor Field Laboratory, Fish and Wildlife Research InstituteFlorida Fish and Wildlife Conservation CommissionPort CharlotteUSA
  6. 6.Saving the BlueMiamiUSA

Personalised recommendations