Inferences of environmental and biotic effects on patterns of eukaryotic alpha and beta diversity for the spring systems of Ash Meadows, Nevada
- 134 Downloads
Abstract
Freshwater springs are important ecosystems. In the arid regions of North America, groundwater extraction has caused the desiccation of springs and the extinction of taxa. To better describe the biodiversity of freshwater springs in the hope of establishing a sensitive approach for monitoring the predicted change in spring systems, we used high-resolution genetic methods to estimate the alpha and beta diversity of 19 springs and two reservoirs within the Ash Meadows National Wildlife Refuge in southwestern Nevada. We discovered a large number of distinct taxa based on eukaryote ribosomal gene sequences and show water temperature, spring size, and the presence or absence of non-native predators predicts alpha diversity, and temperature predicts beta diversity. Our study highlights how DNA data support inferences of environmental factors influencing community diversity and demonstrates the method may be an important tool for monitoring ecological communities.
Keywords
Alpha diversity Beta diversity Eukaryotes Ecological communities Groundwater springsNotes
Acknowledgements
Funding was provided by a departmental Graduate Student Research Grant. Thanks to Ash Meadows National Wildlife Refuge for permitting sampling of springs. Thanks also to Cristi Baldino, Darrick Weissenfluh, Will Thomas, Jon Leff, Joey Knelman, Jessica Henley, Noah Fierer, Diana Nemergut, Kendi Davies, Nolan Kane, and the Martin Lab group. We are especially grateful for the reviews provided by Leon Barmuta, Joel Trexler, and two anonymous reviewers; their knowledge and attention to detail greatly improved our paper. All remaining errors and omissions are attributable to the authors.
Author contribution statement
ELP and APM conceived of and designed the study. ELP performed the fieldwork and lab work. ELP and APM conducted analyses and wrote the manuscript.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
References
- Abele SL (ed) (2011) Nevada springs conservation plan. The Nature Conservancy, RenoGoogle Scholar
- Agostinho AA, Zalewski M (1995) The dependence of fish community structure and dynamics on floodplain and riparian ecotone zone in Parana River, Brazil. Hydrobiologia 303:141–148. https://doi.org/10.1007/BF00034051 CrossRefGoogle Scholar
- Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4:e6372. https://doi.org/10.1371/journal.pone.0006372 CrossRefPubMedPubMedCentralGoogle Scholar
- Baas Becking L (1934) Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon N.V, Den HagueGoogle Scholar
- Bangyeekhun E, Ryynänen H, Henttonen P et al (2001) Sequence analysis of the ribosomal internal transcribed spacer DNA of the crayfish parasite Psorospermium haeckeli. Dis Aquat Organ 46:217–222. https://doi.org/10.3354/dao046217 CrossRefPubMedGoogle Scholar
- Barto K (2008) https://www.rdocumentation.org/packages/MuMIn
- Bogan MT, Noriega-Felix N, Vidal-Aguilar SL et al (2014) Biogeography and conservation of aquatic fauna in spring-fed tropical canyons of the southern Sonoran Desert, Mexico. Biodivers Conserv 23:2705–2748. https://doi.org/10.1007/s10531-014-0745-z CrossRefGoogle Scholar
- Bradford TM, Morgan MJ, Lorenz Z et al (2013) Microeukaryote community composition assessed by pyro sequencing is associated with light availability and phytoplankton primary production along a lowland river. Freshw Biol 58:2401–2413. https://doi.org/10.1111/fwb.12219 CrossRefGoogle Scholar
- Bråte J, Logares R, Berney C et al (2010) Freshwater Perkinsea and marine-freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA. ISME J 4:1144–1153. https://doi.org/10.1038/ismej.2010.39 CrossRefPubMedGoogle Scholar
- Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304. https://doi.org/10.1177/0049124104268644 CrossRefGoogle Scholar
- Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth0510-335 CrossRefPubMedPubMedCentralGoogle Scholar
- Carignan V, Villard M-A (2002) Selecting indicator species to monitor ecological integrity: a review. Environ Monit Assess 78:45–61CrossRefGoogle Scholar
- Cayan DR, Das T, Pierce DW et al (2010) Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc Natl Acad Sci 107:21271–21276. https://doi.org/10.1073/pnas.0912391107 CrossRefPubMedGoogle Scholar
- Charvet S, Vincent WF, Comeau A, Lovejoy C (2012) Pyrosequencing analysis of the protist communities in a high arctic meromictic lake: DNA preservation and change. Front Microbiol 3:1–14. https://doi.org/10.3389/fmicb.2012.00422 CrossRefGoogle Scholar
- Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:205–219CrossRefGoogle Scholar
- Contreras-Balderas S, Lozano-Vilano M (1996) Extinction of most Sandia and Potosí valleys (Nuevo León, Mexico) endemic pupfishes, crayfishes and snails. Ichtyological Explor Freshw 7:33–40Google Scholar
- Dallas T (2014) Metacom: an R package for the analysis of metacommunity structure. Ecography 37:402–405. https://doi.org/10.1111/j.1600-0587.2013.00695.x CrossRefGoogle Scholar
- Davis J, Kerezsy A, Nicol S (2017) Springs: conserving perennial water is critical in arid landscapes. Biol Conserv 211:30–35. https://doi.org/10.1016/j.biocon.2016.12.036 CrossRefGoogle Scholar
- Deacon JE, Williams CD (1991) Ash meadows and the legacy of the Devils hole pupfish. In: Minckley CO, Deacon JE (eds) Battle against extinction: native fish management in the American West. University of Arizona Press, Tucson, pp 69–92Google Scholar
- Deacon JE, Williams AE, Williams CD, Williams JE (2007) Fueling population growth in Las Vegas: how large-scale groundwater withdrawal could burn regional biodiversity. Bioscience 57:688–698. https://doi.org/10.1641/B570809 CrossRefGoogle Scholar
- Debroas D, Hugoni M, Domaizon I (2015) Evidence for an active rare biosphere within freshwater protists community. Mol Ecol 24:1236–1247. https://doi.org/10.1111/mec.13116 CrossRefPubMedGoogle Scholar
- Debroas D, Domaizon I, Humbert J-F et al (2017) Overview of freshwater microbial eukaryotes diversity: a first analysis of publicly available metabarcoding data. FEMS Microbiol Ecol 93:1–14. https://doi.org/10.1093/femsec/fix023 CrossRefGoogle Scholar
- Delong MD, Brusven MA (1998) Macroinvertebrate community structure along the longitudinal gradient of an agriculturally impacted stream. Environ Manag 22:445–457CrossRefGoogle Scholar
- Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182. https://doi.org/10.1017/S1464793105006950 CrossRefPubMedGoogle Scholar
- Dudley W, Larsen J (1976) Effect of irrigation pumping on desert pupfish habitats in Ash Meadows. Nye County, NevadaGoogle Scholar
- Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461 CrossRefPubMedPubMedCentralGoogle Scholar
- Elmore AJ, Manning SJ, Mustard JF, Craine JM (2006) Decline in alkali meadow vegetation cover in California: the effects of groundwater extraction and drought. J Appl Ecol 43:770–779. https://doi.org/10.1111/j.1365-2664.2006.01197.x CrossRefGoogle Scholar
- Finlay BJ, Maberly SC, Cooper JI (1997) Microbial diversity and ecosystem function. Oikos 80:209–213CrossRefGoogle Scholar
- Freeman KR, Martin AP, Karki D et al (2009) Evidence that chytrids dominate fungal communities in high-elevation soils. Proc Natl Acad Sci 106:18315–18320. https://doi.org/10.1073/pnas.0907303106 CrossRefPubMedGoogle Scholar
- Friberg N, DybkjÆr JB, Olafsson JS et al (2009) Relationships between structure and function in streams contrasting in temperature. Freshw Biol 54:2051–2068. https://doi.org/10.1111/j.1365-2427.2009.02234.x CrossRefGoogle Scholar
- Glennon R (2002) The tourist’s mirage—San Antonio’s river walk, the Edwards aquifer, and endangered species. In: Glennon R (ed) Water follies: groundwater pumping and the fate of America’s fresh waters. Island Press, Washington DC, pp 87–97Google Scholar
- Green J, Bohannan BJM (2006) Spatial scaling of microbial biodiversity. Trends Ecol Evol 21:501–507. https://doi.org/10.1016/j.tree.2006.06.012 CrossRefPubMedGoogle Scholar
- Haag WR, Warren ML (1998) Role of ecological factors and reproductive strategies in structuring freshwater mussel communities. Can J Fish Aquat Sci 55:297–306CrossRefGoogle Scholar
- Hahn MW (2006) The microbial diversity of inland waters. Curr Opin Biotechnol 17:256–261. https://doi.org/10.1016/j.copbio.2006.05.006 CrossRefPubMedGoogle Scholar
- Hansel-Welch N, Butler MG, Carlson TJ, Hanson MA (2003) Changes in macrophyte community structure in Lake Christina (Minnesota), a large shallow lake, following biomanipulation. Aquat Bot 75:323–337. https://doi.org/10.1016/S0304-3770(03)00002-0 CrossRefGoogle Scholar
- Hershler R, Liu H-P, Bradford C (2013) Systematics of a widely distributed western North American springsnail, Pyrgulopsis micrococcus (Caenogastropoda, Hydrobiidae), with descriptions of three new congeners. Zookeys 330:27–52. https://doi.org/10.3897/zookeys.330.5852 CrossRefGoogle Scholar
- Hershler R, Liu H-P, Howard J (2014) Springsnails: a new conservation focus in western North America. Bioscience 64:693–700. https://doi.org/10.1093/biosci/biu100 CrossRefGoogle Scholar
- Hunter ML, Acuña V, Marie D et al (2017) Conserving small natural features with large ecological roles: a synthetic overview. Biol Conserv 211:88–95. https://doi.org/10.1016/j.biocon.2016.12.020 CrossRefGoogle Scholar
- Jackson RB, Carpenter SR, Clifford ND et al (2001) Water in a changing world. Ecol Appl 11:1027–1045. https://doi.org/10.1890/0012-9623(2005)86%5b249b:iie%5d2.0.co;2 CrossRefGoogle Scholar
- Korbel KL, Hancock PJ, Serov P, Lim RP, Hose GC (2013) Groundwater ecosystems vary with land use across a mixed agricultural landscape. J Environ Qual 42:380–390. https://doi.org/10.2134/jeq2012.0018 CrossRefPubMedGoogle Scholar
- Lafferty KD, Dobson AP, Kuris AM (2006) Parasites dominate food web links. Proc Natl Acad Sci 103:11211–11216. https://doi.org/10.1073/pnas.0604755103 CrossRefPubMedGoogle Scholar
- Leibold MA, Mikkelson GM (2002) Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos 97:237–250CrossRefGoogle Scholar
- Lougheed VL, Crosbie B, Chow-Fraser P (2001) Primary determinants of macrophyte community structure in 62 marshes across the Great Lakes basin: latitude, land use, and water quality effects. Can J Fish Aquat Sci 58:1603–1612. https://doi.org/10.1139/f01-102 CrossRefGoogle Scholar
- Mangot J-F, Domaizon I, Taib N et al (2013) Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes. Environ Microbiol 15:1745–1758. https://doi.org/10.1111/1462-2920.12065 CrossRefPubMedGoogle Scholar
- McCreary NJ (1991) Competition as a mechanism of submersed macrophyte community structure. Aquat Bot 41:177–193. https://doi.org/10.1016/0304-3770(91)90043-5 CrossRefGoogle Scholar
- Meerhoff M, Clemente JM, de Mello FT et al (2007) Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Glob Chang Biol 13:1888–1897. https://doi.org/10.1111/j.1365-2486.2007.01408.x CrossRefGoogle Scholar
- Meinzer OE (1923) Outline of ground-water hydrology, with definitionsGoogle Scholar
- Mihaljevic JR, Joseph MB, Johnson PTJ (2015) Using multispecies occupancy models to improve the characterization and understanding of metacommunity structure. Ecology 96:1783–1792. https://doi.org/10.1890/07-1861.1 CrossRefPubMedGoogle Scholar
- Milner AM, Robertson AL, Monaghan KA et al (2008) Colonization and development of an Alaskan stream community over 28 years. Front Ecol Environ 6:413–419. https://doi.org/10.1890/060149 CrossRefGoogle Scholar
- Monchy S, Sanciu G, Jobard M et al (2011) Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ Microbiol 13:1433–1453. https://doi.org/10.1111/j.1462-2920.2011.02444.x CrossRefPubMedGoogle Scholar
- Morrison RR, Stone MC, Sada DW (2013) Environmental response of a desert springbrook to incremental discharge reductions, death Valley National Park, California, USA. J Arid Environ 99:5–13. https://doi.org/10.1016/j.jaridenv.2013.09.002 CrossRefGoogle Scholar
- Nolte V, Pandey RV, Jost S et al (2010) Contrasting seasonal niche separation between rare and abundant taxa conceals the extent of protist diversity. Mol Ecol 19:2908–2915. https://doi.org/10.1111/j.1365-294X.2010.04669.x CrossRefPubMedPubMedCentralGoogle Scholar
- Oksanen J, Blanchet FG, Kindt R et al (2011) Vegan: community ecology packageGoogle Scholar
- Paulson EL, Martin AP (2014) Discerning invasion history in an ephemerally connected system: landscape genetics of Procambarus clarkii in Ash Meadows, Nevada. Biol Invasions 16:1719–1734. https://doi.org/10.1007/s10530-013-0621-x CrossRefGoogle Scholar
- Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219 CrossRefPubMedPubMedCentralGoogle Scholar
- R Core Team (2018) R: a language and environment for statistical computingGoogle Scholar
- Röhl O, Peršoh D, Mittelbach M et al (2017) Distinct sensitivity of fungal freshwater guilds to water quality. Mycol Prog 16:155–169. https://doi.org/10.1007/s11557-016-1261-1 CrossRefGoogle Scholar
- Ruhí A, Chappuis E, Escoriza D et al (2014) Environmental filtering determines community patterns in temporary wetlands: a multi-taxon approach. Hydrobiologia 723:25–39. https://doi.org/10.1007/s10750-013-1514-9 CrossRefGoogle Scholar
- Schlosser IJ (1982) Fish community structure and function along two habitat gradients in a headwater stream. Ecol Monogr 52:395–414CrossRefGoogle Scholar
- Seager R, Ting M, Held I et al (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science (80-) 316:1181–1184. https://doi.org/10.1126/science.1139601 CrossRefGoogle Scholar
- Sharp CE, Brady AL, Sharp GH et al (2014) Humboldt’s spa: microbial diversity is controlled by temperature in geothermal environments. ISME J 8:1166–1174. https://doi.org/10.1038/ismej.2013.237 CrossRefGoogle Scholar
- Shepard WD (1993) Desert springs—both rare and endangered. Aquat Conserv Mar Freshw Ecosyst 3:351–359CrossRefGoogle Scholar
- Shepard WD, Blinn DW, Hoffman RJ, Kantz PT (2000) Algae of devils hole, Nevada, death valley National Park. West N Am Nat 60:410–419Google Scholar
- Sohlberg E, Bomberg M, Miettinen H et al (2015) Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland. Front Microbiol 6:1–11. https://doi.org/10.3389/fmicb.2015.00573 CrossRefGoogle Scholar
- Soltz DL, Naiman RJ (1978) The natural history of native fishes in the Death Valley system. Natural History Museum of Los Angeles, Los AngelesGoogle Scholar
- Stevens LE, Bailowitz RA (2008) Odonata of ash meadows national wildlife refuge, Southern Nevada, USA. J Ariz-Nev Acad Sci 40:128–135CrossRefGoogle Scholar
- Stevens LE, Meretsky VJ (eds) (2008) Aridland springs in North America: ecology and conservation. University of Arizona Press, TucsonGoogle Scholar
- Stoeck T, Breiner H-W, Filker S et al (2014) A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology. Environ Microbiol 16:430–444. https://doi.org/10.1111/1462-2920.12194 CrossRefPubMedGoogle Scholar
- Strickler KM, Fremier AK, Goldberg CS (2015) Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol Conserv 183:85–92. https://doi.org/10.1016/j.biocon.2014.11.03 CrossRefGoogle Scholar
- Tang CQ, Leasi F, Obertegger U et al (2012) The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proc Natl Acad Sci 109:16208–16212. https://doi.org/10.1073/pnas.1209160109 CrossRefPubMedGoogle Scholar
- Thomas JM, Moser DP, Fisher JC et al (2013) Using water chemistry, isotopes and microbiology to evaluate groundwater sources, flow paths and geochemical reactions in the Death Valley flow system, USA. Procedia Earth Planet Sci 7:842–845. https://doi.org/10.1016/j.proeps.2013.03.033 CrossRefGoogle Scholar
- Torstensson A, Dinasquet J, Chierici M et al (2015) Physicochemical control of bacterial and protist community composition and diversity in Antarctic sea ice. Environ Microbiol 17:3869–3881. https://doi.org/10.1111/1462-2920.12865 CrossRefPubMedGoogle Scholar
- Unmack PJ, Minckley WL (2008) The demise of desert springs. In: Meretsky VJ, Stevens LE (eds) Aridland springs in North America: ecology and conservation. The University of Arizona Press, Tucson, pp 12–34Google Scholar
- Vaughn CC, Nichols SJ, Spooner DE (2008) Community and foodweb ecology of freshwater mussels. J N Am Benthol Soc 27:409–423. https://doi.org/10.1899/07-058.1 CrossRefGoogle Scholar
- Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561. https://doi.org/10.1038/nature09549 CrossRefPubMedGoogle Scholar
- Walker GE, Eakin TE (1963) Geology and ground water of Amargosa Desert, Nevada-CaliforniaGoogle Scholar
- Walther G-R, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395. https://doi.org/10.1038/416389a CrossRefGoogle Scholar
- Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07 CrossRefPubMedPubMedCentralGoogle Scholar
- Welborn GA, Skelly DK, Werner EE (1996) Mechanisms creating community structure across a freshwater habitat gradient. Annu Rev Ecol Syst 27:337–363CrossRefGoogle Scholar
- Winograd IJ, Thordarson W (1975) Hydrogeologic and hydrochemical framework, south-central Great Basin, Nevada-California, with special reference to the Nevada Test SiteGoogle Scholar
- Zektser S, Loáiciga HA, Wolf JT (2005) Environmental impacts of groundwater overdraft: selected case studies in the southwestern United States. Environ Geol 47:396–404. https://doi.org/10.1007/s00254-004-1164-3 CrossRefGoogle Scholar