Advertisement

Oecologia

, Volume 191, Issue 3, pp 541–553 | Cite as

Nest composition, stable isotope ratios and microbiota unravel the feeding behaviour of an inquiline termite

  • Simon HellemansEmail author
  • Martyna Marynowska
  • Thomas Drouet
  • Gilles Lepoint
  • Denis Fournier
  • Magdalena Calusinska
  • Yves Roisin
Behavioral ecology – original research

Abstract

Termites are eusocial insects having evolved several feeding, nesting and reproductive strategies. Among them, inquiline termites live in a nest built by other termite species: some of them do not forage outside the nest, but feed on food stored by the host or on the nest material itself. In this study, we characterized some dimensions of the ecological niche of Cavitermes tuberosus (Termitidae: Termitinae), a broad-spectrum inquiline termite with a large neotropical distribution, to explain its ecological success. We used an integrative framework combining ecological measures (physico-chemical parameters, stable isotopic ratios of N and C) and Illumina MiSeq sequencing of 16S rRNA gene to identify bacterial communities and to analyse termites as well as the material from nests constructed by different termite hosts (the builders). Our results show that (1) nests inhabited by C. tuberosus display a different physico-chemical composition when compared to nests inhabited by its builder alone; (2) stable isotopic ratios suggest that C. tuberosus feeds on already processed, more humified, nest organic matter; and (3) the gut microbiomes cluster by termite species, with the one of C. tuberosus being much more diverse and highly similar to the one of its main host, Labiotermes labralis. These results support the hypothesis that C. tuberosus is a generalist nest feeder adapted to colonize nests built by various builders, and explain its ecological success.

Keywords

Isoptera Termitidae Cavitermes tuberosus Humivorous Neotropical Nitrogen Nest 

Notes

Acknowledgments

We are grateful to the late Philippe Cerdan, to Régis Vigouroux and the staff of the Laboratoire Environnement HYDRECO of Petit Saut (EDF-CNEH) for logistic support during field work. We thank Xavier Goux and Nicolas Kaczmarek for their help in the field, and Alexandre Van Baekel for assistance during ICP-OES measurements.

Author contribution statement

SH and YR designed the study. SH, MM, DF, and YR collected the material. SH and TD performed soil analyses; SH and GL performed isotopic analyses; and MM and MC performed Illumina sequencing and subsequent analyses. All authors contributed significantly to the manuscript and approved the final version.

Funding

This work was supported by the Belgian National Fund for Scientific Research F.R.S.-FNRS (PhD fellowship to SH and Grant PDR T.0065.15 to YR) and by the Luxembourg National Research Fund through an FNR 2014 CORE project (OPTILYS; Exploring the higher termite lignocellulolytic system to optimize the conversion of biomass into energy and useful platform molecules/C14/SR/8286517). GL and DF are appointed as Research Associates for the F.R.S.-FNRS.

Compliance with ethical standards

Conflict of interest

We declare we have no competing interests.

Data archiving

Sequences produced for this study have been deposited in GenBank repository under Project accession KBWO01000000 (see details in Supplementary Table S2).

Supplementary material

442_2019_4514_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1 kb)
442_2019_4514_MOESM2_ESM.xlsx (35 kb)
Supplementary material 2 (XLSX 34 kb)
442_2019_4514_MOESM3_ESM.xlsx (1.4 mb)
Supplementary material 3 (XLSX 1419 kb)

References

  1. Abdul Rahman N, Parks DH, Willner DL et al (2015) A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome 3:1–16.  https://doi.org/10.1186/s40168-015-0067-8 CrossRefGoogle Scholar
  2. Abe T (1987) Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T (eds) Evolution and coadaptation in biotic communities. Univeristy of Tokyo Press, Tokyo, pp 125–148Google Scholar
  3. Apolinário FE, Martius C (2004) Ecological role of termites (Insecta, Isoptera) in tree trunks in central Amazonian rain forests. For Ecol Manage 194:23–28.  https://doi.org/10.1016/j.foreco.2004.01.052 CrossRefGoogle Scholar
  4. Araujo RL (1977) Further notes in the bionomics of Serritermes (Isoptera). Rev Bras Entomol 21:31–32Google Scholar
  5. Barron AR, Wurzburger N, Bellenger JP et al (2009) Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci 2:42–45.  https://doi.org/10.1038/ngeo366 CrossRefGoogle Scholar
  6. Beck MW (2017) ggord: ordination plots with ggplot 2. R package version 1.0.0. https://zenodo.org/badge/latestdoi/35334615
  7. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  8. Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 363–387CrossRefGoogle Scholar
  9. Bottinelli N, Jouquet P, Capowiez Y et al (2015) Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil Tillage Res 146:118–124.  https://doi.org/10.1016/j.still.2014.01.007 CrossRefGoogle Scholar
  10. Bourguignon T, Šobotník J, Lepoint G et al (2009) Niche differentiation among neotropical soldierless soil-feeding termites revealed by stable isotope ratios. Soil Biol Biochem 41:2038–2043.  https://doi.org/10.1016/j.soilbio.2009.07.005 CrossRefGoogle Scholar
  11. Bourguignon T, Šobotník J, Lepoint G et al (2011) Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol Entomol 36:261–269.  https://doi.org/10.1111/j.1365-2311.2011.01265.x CrossRefGoogle Scholar
  12. Bourguignon T, Drouet T, Šobotník J et al (2015a) Influence of soil properties on soldierless termite distribution. PLoS One 10:e0135341.  https://doi.org/10.1371/journal.pone.0135341 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bourguignon T, Lo N, Cameron SL et al (2015b) The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol Biol Evol 32:406–421.  https://doi.org/10.1093/molbev/msu308 CrossRefPubMedGoogle Scholar
  14. Bourguignon T, Lo N, Šobotník J et al (2017) Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol Biol Evol 34:589–597.  https://doi.org/10.1093/molbev/msw253 CrossRefPubMedGoogle Scholar
  15. Bourguignon T, Lo N, Dietrich C et al (2018) Rampant host switching shaped the termite gut microbiome. Curr Biol 28:649–654.e2.  https://doi.org/10.1016/j.cub.2018.01.035 CrossRefPubMedGoogle Scholar
  16. Brauman A (2000) Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: a review. Eur J Soil Biol 36:117–125CrossRefGoogle Scholar
  17. Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166.  https://doi.org/10.1146/annurev-micro-092412-155715 CrossRefPubMedGoogle Scholar
  18. Brune A, Ohkuma M (2011) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 439–475Google Scholar
  19. Constantino R (1991) Termites (Isoptera) from the lower Japurá river, Amazonas state, Brazil. Bol Mus Para Emílio Goeldi, séries Zool 7:189–224Google Scholar
  20. Cosson JF, Ringuet S, Claessens O et al (1999) Ecological changes in recent land-bridge islands in French Guiana, with emphasis on vertebrate communities. Biol Conserv 91:213–222.  https://doi.org/10.1016/S0006-3207(99)00091-9 CrossRefGoogle Scholar
  21. Davies RG (2002) Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation. Oecologia 133:233–242.  https://doi.org/10.1007/s00442-002-1011-8 CrossRefPubMedGoogle Scholar
  22. Davies RG, Hernández LM, Eggleton P et al (2003) Environmental and spatial influences upon species composition of a termite assemblage across neotropical forest islands. J Trop Ecol 19:509–524.  https://doi.org/10.1017/S0266467403003560 CrossRefGoogle Scholar
  23. de Granville J-J (1988) Phytogeographical characteristics of the Guianan forests. Taxon 37:578–594CrossRefGoogle Scholar
  24. Donovan SE, Eggleton P, Bignell DE (2001) Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26:356–366.  https://doi.org/10.1046/j.1365-2311.2001.00342.x CrossRefGoogle Scholar
  25. Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34.  https://doi.org/10.1146/annurev-ento-010814-020822 CrossRefPubMedGoogle Scholar
  26. Eady RR (1996) Structure-function relationships of alternative nitrogenases. Chem Rev 96:3013–3030.  https://doi.org/10.1021/cr950057h CrossRefPubMedGoogle Scholar
  27. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.  https://doi.org/10.1093/bioinformatics/btq461 CrossRefGoogle Scholar
  28. Eggleton P, Tayasu I (2001) Feeding groups, lifetypes and the global ecology of termites. Ecol Res 16:941–960.  https://doi.org/10.1046/j.1440-1703.2001.00444.x CrossRefGoogle Scholar
  29. Emerson AE (1925) The termites of Kartabo, Bartica District, British Guiana. Zoologica 6:291–459Google Scholar
  30. Emerson AE (1956) Regenerative behavior and social homeostasis of termites. Ecology 37:248–258CrossRefGoogle Scholar
  31. Fall S, Nazaret S, Chotte JL, Brauman A (2004) Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds. Microb Ecol 48:191–199.  https://doi.org/10.1007/s00248-003-1047-2 CrossRefPubMedGoogle Scholar
  32. Fall S, Hamelin J, Ndiaye F et al (2007) Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds. Appl Environ Microbiol 73:5199–5208.  https://doi.org/10.1128/AEM.02616-06 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Florencio DF, Rosa CS, Marins A et al (2011) How to preserve termite samples in the field for carbon and nitrogen stable isotope studies? Rapid Commun Mass Spectrom 25:243–246.  https://doi.org/10.1002/rcm.4820 CrossRefPubMedGoogle Scholar
  34. Florencio DF, Marins A, Rosa CS et al (2013) Diet segregation between cohabiting builder and inquiline termite species. PLoS One 8:e66535.  https://doi.org/10.1371/journal.pone.0066535 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Fournier D, Hellemans S, Hanus R, Roisin Y (2016) Facultative asexual reproduction and genetic diversity of populations in the humivorous termite Cavitermes tuberosus. Proc R Soc B 283:20160196.  https://doi.org/10.1098/rspb.2016.0196 CrossRefPubMedGoogle Scholar
  36. Garnier-Sillam E, Harry M (1995) Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: its influence on soil structure stability. Insect Soc 42:167–185.  https://doi.org/10.1007/BF01242453 CrossRefGoogle Scholar
  37. Garnier-Sillam E, Villemin G, Toutain F, Renoux J (1985) Formation of organo-mineral micro-aggregates in termites faeces. C r séances Acad sci Sér 3 Sci vie 301:213–218Google Scholar
  38. Hellemans S, Bourguignon T, Kyjaková P et al (2017a) Mitochondrial and chemical profiles reveal a new genus and species of Neotropical termite with snapping soldiers, Palmitermes impostor (Termitidae: Termitinae). Invertebr Syst 31:394–405.  https://doi.org/10.1071/IS16089 CrossRefGoogle Scholar
  39. Hellemans S, Fournier D, Hanus R, Roisin Y (2017b) Secondary queens in the parthenogenetic termite Cavitermes tuberosus develop through a transitional helper stage. Evol Dev 19:253–262.  https://doi.org/10.1111/ede.12240 CrossRefPubMedGoogle Scholar
  40. Hellemans S, Fournier D, Hanus R, Roisin Y (2019a) Sex ratio variations among years and breeding systems in a facultatively parthenogenetic termite. Insect Soc 66:129–138.  https://doi.org/10.1007/s00040-018-0667-y CrossRefGoogle Scholar
  41. Hellemans S, Kaczmarek N, Marynowska M et al (2019b) Bacteriome-associated Wolbachia of the parthenogenetic termite Cavitermes tuberosus. FEMS Microbiol Ecol 95:fiy235.  https://doi.org/10.1093/femsec/fiy235 CrossRefGoogle Scholar
  42. Hood-Nowotny R, Knols BGJ (2007) Stable isotope methods in biological and ecological studies of arthropods. Entomol Exp Appl 124:3–16.  https://doi.org/10.1111/j.1570-7458.2007.00572.x CrossRefGoogle Scholar
  43. Hyodo F, Tayasu I, Konaté S et al (2008) Gradual enrichment of 15N with humification of diets in a below-ground food web: relationship between 15N and diet age determined using 14C. Funct Ecol 22:516–522.  https://doi.org/10.1111/j.1365-2435.2008.01386.x CrossRefGoogle Scholar
  44. Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER—stable isotope bayesian ellipses in R. J Anim Ecol 80:595–602.  https://doi.org/10.1111/j.1365-2656.2011.01806.x CrossRefPubMedGoogle Scholar
  45. Ji R, Brune A (2006) Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochemistry 78:267–283.  https://doi.org/10.1007/s10533-005-4279-z CrossRefGoogle Scholar
  46. Ji R, Kappler A, Brune A (2000) Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biol Biochem 32:1281–1291CrossRefGoogle Scholar
  47. Jouquet P, Lepage M, Velde B (2002) Termite soil preferences and particle selections: strategies related to ecological requirements. Insect Soc 49:1–7.  https://doi.org/10.1007/s00040-002-8269-z CrossRefGoogle Scholar
  48. Jouquet P, Guilleux N, Chintakunta S et al (2015) The influence of termites on soil sheeting properties varies depending on the materials on which they feed. Eur J Soil Biol 69:74–78.  https://doi.org/10.1016/j.ejsobi.2015.05.007 CrossRefGoogle Scholar
  49. Jouquet P, Bottinelli N, Shanbhag RR et al (2016) Termites: the neglected soil engineers of tropical soils. Soil Sci 181:157–165.  https://doi.org/10.1097/SS.0000000000000119 CrossRefGoogle Scholar
  50. Krishna K, Grimaldi DA, Krishna V, Engel MS (2013a) Treatise on the Isoptera of the world. 1. Introduction. Bull Am Mus Nat Hist 377:1–200.  https://doi.org/10.1206/377.1 CrossRefGoogle Scholar
  51. Krishna K, Grimaldi DA, Krishna V, Engel MS (2013b) Treatise on the Isoptera of the world. 6. Termitidae (Part Three), Incertae sedis, taxa excluded from Isoptera. Bull Am Mus Nat Hist 377:1989–2432.  https://doi.org/10.1206/377.6 CrossRefGoogle Scholar
  52. Macke E, Tasiemski A, Massol F et al (2017) Life history and eco-evolutionary dynamics in light of the gut microbiota. Oikos 126:508–531.  https://doi.org/10.1111/oik.03900 CrossRefGoogle Scholar
  53. Manjula A, Pushpanathan M, Sathyavathi S et al (2016) Comparative analysis of microbial diversity in termite gut and termite nest using ion sequencing. Curr Microbiol 72:267–275.  https://doi.org/10.1007/s00284-015-0947-y CrossRefPubMedGoogle Scholar
  54. Martius C (1997) The termites. In: Junk W (ed) Ecological studies 126. The Central-Amazonian floodplain: ecology of a pulsing system. Springer, Berlin, pp 361–371CrossRefGoogle Scholar
  55. Marynowska M, Goux X, Sillam-Dussès D et al (2017) Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome. BMC Genomics 18:681.  https://doi.org/10.1186/s12864-017-4076-9 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mathews AGA (1977) Studies on termites from the Mato Grosso state, Brazil. Academia Brasileira de Ciências, Rio de JaneiroGoogle Scholar
  57. McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390.  https://doi.org/10.1034/j.1600-0706.2003.12098.x CrossRefGoogle Scholar
  58. Mikaelyan A, Dietrich C, Köhler T et al (2015) Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol 24:5284–5295.  https://doi.org/10.1111/mec.13376 CrossRefPubMedGoogle Scholar
  59. Mikaelyan A, Meuser K, Brune A (2017) Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. FEMS Microbiol Ecol 93:fiw210.  https://doi.org/10.1093/femsec/fiw210 CrossRefGoogle Scholar
  60. Moore BP (1969) Biochemical studies in termites. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press, New-York, pp 407–432CrossRefGoogle Scholar
  61. Moran NA, Sloan DB (2015) The hologenome concept: helpful or hollow? PLoS Biol 13:e1002311.  https://doi.org/10.1371/journal.pbio.1002311 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Myles TG (1999) Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33:1–91Google Scholar
  63. Nadelhoffer KJ, Fry B (1994) Nitrogen isotope studies in terrestrial ecosystems. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell Science Ltd, Oxford, pp 22–44Google Scholar
  64. Nalepa CA, Bignell DE, Bandi C (2001) Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insect Soc 48:194–201.  https://doi.org/10.1007/PL00001767 CrossRefGoogle Scholar
  65. Noirot C (1970) The nest of termites. In: Krishna K, Weesner FM (eds) Biology of termites, vol 2. Academic Press, New York, pp 73–125Google Scholar
  66. Ohkuma M, Brune A (2011) Diversity, structure, and evolution of the termite gut microbial community. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 413–438Google Scholar
  67. Ohkuma M, Noda S, Kudo T (1999) Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Appl Environ Microbiol 65:4926–4934PubMedPubMedCentralGoogle Scholar
  68. Pansu M, Gautheyrou J (2006) Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer, BerlinCrossRefGoogle Scholar
  69. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS One 5:e9672.  https://doi.org/10.1371/journal.pone.0009672 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Evol Syst 18:293–320CrossRefGoogle Scholar
  71. Potapov AM, Tiunov AV, Scheu S (2019) Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol Rev 94:37–59.  https://doi.org/10.1111/brv.12434 CrossRefGoogle Scholar
  72. Potrikus CJ, Breznak JA (1980) Uric acid in wood-eating termites. Insect Biochem 10:19–27.  https://doi.org/10.1016/0020-1790(80)90034-7 CrossRefGoogle Scholar
  73. Potrikus CJ, Breznak JA (1981) Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci USA 78:4601–4605.  https://doi.org/10.1073/pnas.78.7.4601 CrossRefPubMedGoogle Scholar
  74. Pruesse E, Quast C, Knittel K et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196.  https://doi.org/10.1093/nar/gkm864 CrossRefPubMedPubMedCentralGoogle Scholar
  75. R Development Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  76. Rückamp D, Amelung W, Borma LS et al (2009) Carbon and nutrient leaching from termite mounds inhabited by primary and secondary termites. Appl Soil Ecol 43:159–162.  https://doi.org/10.1016/j.apsoil.2009.06.012 CrossRefGoogle Scholar
  77. Rückamp D, Martius C, Bornemann L et al (2012) Soil genesis and heterogeneity of phosphorus forms and carbon below mounds inhabited by primary and secondary termites. Geoderma 170:239–250.  https://doi.org/10.1016/j.geoderma.2011.10.004 CrossRefGoogle Scholar
  78. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541.  https://doi.org/10.1128/AEM.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Schnitzer M (1971) Characterization of humic constituents by spectroscopy. In: McLaren AD, Skujins J (eds) Soil biochemistry, vol 2. Marcel Dekker, New York, pp 60–95Google Scholar
  80. Shapira M (2016) Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol Evol 31:539–549.  https://doi.org/10.1016/j.tree.2016.03.006 CrossRefPubMedGoogle Scholar
  81. Shellman-Reeve JS (1997) The spectrum of eusociality in termites. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 52–93CrossRefGoogle Scholar
  82. Su L, Yang L, Huang S et al (2017) Variation in the gut microbiota of termites (Tsaitermes ampliceps) against different diets. Appl Biochem Biotechnol 181:32–47.  https://doi.org/10.1007/s12010-016-2197-2 CrossRefPubMedGoogle Scholar
  83. Tai V, James ER, Nalep CA et al (2015) The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl Environ Microbiol 81:1059–1070.  https://doi.org/10.1128/AEM.02945-14 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Tayasu I, Sugimoto A, Wada E, Abe T (1994) Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften 81:229–231.  https://doi.org/10.1007/BF01138550 CrossRefGoogle Scholar
  85. Tayasu I, Abe T, Eggleton P, Bignell DE (1997) Nitrogen and carbon isotope ratios in termites: an indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecol Entomol 22:343–351.  https://doi.org/10.1046/j.1365-2311.1997.00070.x CrossRefGoogle Scholar
  86. Thong-On A, Suzuki K, Noda S et al (2012) Isolation and characterization of anaerobic bacteria for symbiotic recycling of uric acid nitrogen in the gut of various termites. Microbes Environ 27:186–192.  https://doi.org/10.1264/jsme2.ME11325 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Thorne BL, Haverty MI (1991) A review of intracolony, intraspecific, and interspecific agonism in termites. Sociobiology 19:115–145Google Scholar
  88. Tiunov AV (2007) Stable isotopes of carbon and nitrogen in soil ecological studies. Biol Bull 34:395–407.  https://doi.org/10.1134/S1062359007040127 CrossRefGoogle Scholar
  89. Waidele L, Korb J, Voolstra CR et al (2017) Differential ecological specificity of protist and bacterial microbiomes across a set of termite species. Front Microbiol 8:1–13.  https://doi.org/10.3389/fmicb.2017.02518 CrossRefGoogle Scholar
  90. Waller DA, La Fage JP (1987) Nutritional ecology of termites. In: Slansky F, Rodriguez J (eds) Nutritional ecology of insects, mites, and spiders. Wiley, New York, pp 487–532Google Scholar
  91. Wood TG (1988) Termites and the soil environment. Biol Fertil Soils 6:228–236.  https://doi.org/10.1007/BF00260819 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Environmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyBelvauxLuxembourg
  3. 3.Laboratoire d’Écologie Végétale et BiogéochimieUniversité Libre de BruxellesBrusselsBelgium
  4. 4.Laboratory of Oceanology-MAREUniversity of LiègeLiègeBelgium

Personalised recommendations