Advertisement

Oecologia

, Volume 191, Issue 3, pp 519–530 | Cite as

Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics

  • Charlotte GrossiordEmail author
  • Bradley Christoffersen
  • Aura M. Alonso-Rodríguez
  • Kristina Anderson-Teixeira
  • Heidi Asbjornsen
  • Luiza Maria T. Aparecido
  • Z. Carter Berry
  • Christopher Baraloto
  • Damien Bonal
  • Isaac Borrego
  • Benoit Burban
  • Jeffrey Q. Chambers
  • Danielle S. Christianson
  • Matteo Detto
  • Boris Faybishenko
  • Clarissa G. Fontes
  • Claire Fortunel
  • Bruno O. Gimenez
  • Kolby J. Jardine
  • Lara Kueppers
  • Gretchen R. Miller
  • Georgianne W. Moore
  • Robinson Negron-Juarez
  • Clément Stahl
  • Nathan G. Swenson
  • Volodymyr Trotsiuk
  • Charu Varadharajan
  • Jeffrey M. Warren
  • Brett T. Wolfe
  • Liang Wei
  • Tana E. Wood
  • Chonggang Xu
  • Nate G. McDowell
Physiological ecology – original research

Abstract

Transpiration in humid tropical forests modulates the global water cycle and is a key driver of climate regulation. Yet, our understanding of how tropical trees regulate sap flux in response to climate variability remains elusive. With a progressively warming climate, atmospheric evaporative demand [i.e., vapor pressure deficit (VPD)] will be increasingly important for plant functioning, becoming the major control of plant water use in the twenty-first century. Using measurements in 34 tree species at seven sites across a precipitation gradient in the neotropics, we determined how the maximum sap flux velocity (vmax) and the VPD threshold at which vmax is reached (VPDmax) vary with precipitation regime [mean annual precipitation (MAP); seasonal drought intensity (PDRY)] and two functional traits related to foliar and wood economics spectra [leaf mass per area (LMA); wood specific gravity (WSG)]. We show that, even though vmax is highly variable within sites, it follows a negative trend in response to increasing MAP and PDRY across sites. LMA and WSG exerted little effect on vmax and VPDmax, suggesting that these widely used functional traits provide limited explanatory power of dynamic plant responses to environmental variation within hyper-diverse forests. This study demonstrates that long-term precipitation plays an important role in the sap flux response of humid tropical forests to VPD. Our findings suggest that under higher evaporative demand, trees growing in wetter environments in humid tropical regions may be subjected to reduced water exchange with the atmosphere relative to trees growing in drier climates.

Keywords

Evapotranspiration Plant functional traits Transpiration Vapor pressure deficit 

Notes

Acknowledgements

This project was supported in part by the Next Generation Ecosystem Experiments Tropics, funded by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Sciences Program, under Award Number DE-SC-0011806. CG was supported by the Swiss National Science Foundation SNF (5231.00639.001.01). BC was supported in part by the Laboratory Directed Research and Development Program Project 8872 of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. This work has benefited from an “Investissements d’Avenir” grant managed by Agence Nationale de la Recherche (CEBA, ref. ANR-10-LABX-25-01). Data recorded in French Guiana (FRG) were collected at the Guyaflux sites which belong to the SOERE F-ORE-T and is supported annually by Ecofor, Allenvi and the French national research infrastructure, ANAEE-F. We thank Valentine Herrmann for building the probes for the Panamanian and Brazilian sites. We thank all technicians, students and post-docs who helped collect data at all sites.

Author contribution statement

CG, BC, JW and NGM planned the research. AA, HA, BB, BG, BW, CB, CB, CS, CF, DB, DC, MD, BF, CF, KJ, GRM, GWM, CV, JW, BW, NS, LA, TEW and LW contributed data. CG and BC analyzed the data and wrote a first draft of the manuscript, and all authors contributed to revisions.

Supplementary material

442_2019_4513_MOESM1_ESM.docx (11 mb)
Supplementary material 1 (DOCX 11169 kb)

References

  1. Aparecido LMT, Miller GR, Cahill AT, Moore GW (2016) Comparison of tree transpiration under wet and dry canopy conditions in a Costa Rican Premontane tropical forest. Hydrol Process 30(26):5000–5011CrossRefGoogle Scholar
  2. Baraloto C, Timothy Paine CE, Poorter L, Beauchene J, Bonal D, Domenach A-M, Hérault B, Patiño S, Roggy J-C, Chave J (2010) Decoupled leaf and stem economics in rain forest trees. Ecol Lett 13:1338–1347PubMedCrossRefPubMedCentralGoogle Scholar
  3. Barbour MM, Whitehead D (2003) A demonstration of the theoretical prediction that sap velocity is related to wood density in the conifer Dacrydium cupressinum. New Phytol 158:477–488CrossRefGoogle Scholar
  4. Bartlett MK, Scoffoni C, Sack L (2012) The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol Lett 15:393–405PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bonal D, Bosc A, Ponton S, Goret J-Y, Burban B, Gross P, Bonnefond J-M, Elbers J, Longdoz B, Epron D, Guehl J-M, Granier A (2008) Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. Glob Change Biol 14:1917–1933CrossRefGoogle Scholar
  6. Brodribb TJ (2017) Progressing from ‘functional’ to mechanistic traits. New Phytol 215:9–11PubMedCrossRefPubMedCentralGoogle Scholar
  7. Brum M, Vadeboncoeur MA, Ivanov V, Asbjornsen H, Saleska S, Alves LF, Penha D, Dias JD, Aragão LE, Barros F, Bittencourt P (2019) Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. J Ecol.  https://doi.org/10.1111/1365-2745.13022 CrossRefGoogle Scholar
  8. Burgess SS, Adams MA, Turner NC, Ong CK (1998) The redistribution of soil water by tree root systems. Oecologia 115:306–311PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bush SE, Hultine KR, Sperry JS, Ehleringer JR (2010) Calibration of thermal dissipation sap flow probes for ring-and diffuse-porous trees. Tree Physiol 30:1545–1554PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chave J, Rejou-Mechain M, Burquez A, Chidumay E, Colgan MS, Delitti WBC et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190CrossRefGoogle Scholar
  11. Christianson DS, Varadharajan C, Christofferson B, Detto M, Faybishenko BA, Jardine KJ, Negron-Juarez R, Gimenez BO, Pastorello GZ, Powell T, Warren J, Wolfe B, Chambers JC, Kueppers LM, McDowell NG, Agarwal D (2017) A metadata reporting framework for standardization and synthesis of ecohydrological field observations for ecosystem model parameterization and benchmarking. Ecol Inform 42:148–158CrossRefGoogle Scholar
  12. Christoffersen BO et al (2016) Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v. 1-Hydro). Geosci Model Dev 9:4227CrossRefGoogle Scholar
  13. Compo GP et al (2011) The Twentieth Century Reanalysis Project. Q J R Meteorol Soc 137:1–28CrossRefGoogle Scholar
  14. Cosme LHM, Schietti J, Costa FRC, Oliveira RS (2017) The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytol 215:113–125PubMedCrossRefPubMedCentralGoogle Scholar
  15. Dawson TE, Goldsmith GR (2018) The value of wet leaves. New Phytol 219:1156–1169PubMedCrossRefPubMedCentralGoogle Scholar
  16. Detto M, Wright SJ, Calderón O, Muller-Landau HC (2018) Resource acquisition and reproductive strategies of tropical forest in response to the El Niño-Southern Oscillation. Nat Commun 9:913PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dias AS, Oliveira RS, Martins FR, Bongers F, Anten NPR, Sterck F (2019) How do lianas and trees change their vascular strategy in seasonal versus rain forest? Perspect Plant Ecol Evol Syst 40:125465CrossRefGoogle Scholar
  18. Edwards WRN, Becker P, Èermák J (1997) A unified nomenclature for sap flow measurements. Tree Physiol 17:65–67PubMedCrossRefPubMedCentralGoogle Scholar
  19. Eltahir EAB, Bras RL (1994) Precipitation recycling in the Amazon basin. Q J R Meteorol Soc 120:861–880CrossRefGoogle Scholar
  20. Fisher RA et al (2015) Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4. 5 (ED). Geosci Model Dev 8(11):3593–3619CrossRefGoogle Scholar
  21. Fisher RA et al (2018) Vegetation demographics in earth system models: a review of progress and priorities. Glob Change Biol 24:35–54CrossRefGoogle Scholar
  22. Foley JA et al (2007) Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front Ecol Environ 5:25–32CrossRefGoogle Scholar
  23. Fonti P, Jansen S (2012) Xylem plasticity in response to climate. New Phytol 195:734–736PubMedCrossRefPubMedCentralGoogle Scholar
  24. Fortunel C, Fine PVA, Baraloto C, Dalling J (2012) Leaf, stem and root tissue strategies across 758 Neotropical tree species. Funct Ecol 26:1153–1161CrossRefGoogle Scholar
  25. Fortunel C, Ruelle J, Beauchene J, Fine PV, Baraloto C (2014) Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients. New Phytol 202:79–94PubMedCrossRefPubMedCentralGoogle Scholar
  26. Franks PJ, Cowan IR, Farquhar GD (1997) The apparent feedforward response of stomata to air vapour pressure deficit: information revealed by different experimental procedures with two rainforest trees. Plant Cell Environ 20:142–145CrossRefGoogle Scholar
  27. Granier A (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol 3:309–320PubMedCrossRefPubMedCentralGoogle Scholar
  28. Griffin-Nolan RJ, Bushey JA, Carroll CJW, Challis A, Chieppa J, Garbowski M, Hoffmann AM, Post AK, Slette IJ, Spitzer D, Zambonini D (2018) Trait selection and community weighting are key to understanding ecosystem responses to changing precipitation regimes. Funct Ecol 32:1746–1756CrossRefGoogle Scholar
  29. Grossiord C, Sevanto S, Borrego I, Chan AM, Collins AD, Dickman LT, Hudson P, McBranch N, Michaletz ST, Pockman WT, Vilagrosa A, McDowell NG (2017) Tree water dynamics in a drying and warming world. Plant Cell Environ 40:1861–1873PubMedCrossRefPubMedCentralGoogle Scholar
  30. Grossiord C, Sevanto S, Limousin JM, Meir P, Mencuccini M, Pangle RE, Pockman WT, Salmon Y, Zweifel R, McDowell NG (2018) Manipulative experiments demonstrate how long-term soil moisture changes alter controls of plant water use. Environ Exp Bot 152:19–27CrossRefGoogle Scholar
  31. Hacke UG, Sperry JS, Pittermann J (2004) Analysis of circular bordered pit function II. Gymnosperm tracheids with torus-margo pit membranes. Am J Bot 91:386–400PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kennedy D, Swenson S, Oleson KW, Lawrence DM, Fisher R, Lola da Costa AC, Gentine P (2019) Implementing plant hydraulics in the community land model, version 5. J Adv Model Earth Syst 11:485–513CrossRefGoogle Scholar
  33. Kimball BA, Alonso-Rodríguez AM, Cavaleri MA, Reed SC, González G, Wood TE (2018) Infrared heater system for warming tropical forest understory plants and soils. Ecol Evol 8:1932–1944PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kooperman GJ et al (2018) Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat Clim Change 8:434CrossRefGoogle Scholar
  35. Kumagai T, Kanamori H, Chappell NA (2016) Tropical forest hydrology. For Hydrol Process Manag Assess 88–102Google Scholar
  36. Larjavaara M, Muller-Landau HC (2010) Rethinking the value of high wood density. Funct Ecol 24:701–705CrossRefGoogle Scholar
  37. Litvak E, McCarthy HR, Pataki DE (2012) Transpiration sensitivity of urban trees in a semi-arid climate is constrained by xylem vulnerability to cavitation. Tree Physiol 32:373–388PubMedCrossRefPubMedCentralGoogle Scholar
  38. Luizão RC, Luizão FJ, Paiva RQ, Monteiro TF, Sousa LS, Kruijt B (2004) Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Glob Change Biol 10:592–600CrossRefGoogle Scholar
  39. Luomala E, Laitinen K, Sutinen S, Kellomäki S, Vapaavuori E (2005) Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature. Plant Cell Environ 28:733–749CrossRefGoogle Scholar
  40. Maréchaux I, Bonal D, Bartlett MK, Burban B, Coste S, Courtois EA, Dulormne M, Goret J-Y, Mira E, Mirabel A, Sack L, Stahl C, Chave J (2018) Dry-season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest. Funct Ecol.  https://doi.org/10.1111/1365-2435.13188 CrossRefGoogle Scholar
  41. Mayaux P, Holmgren P, Achard F, Eva H, Stibig HJ, Branthomme A (2005) Tropical forest cover change in the 1990s and options for future monitoring. Philos Trans R Soc B Biol Sci 360:373–384CrossRefGoogle Scholar
  42. Meinzer FC, Goldstein G, Andrade JL (2001) Regulation of water flux through tropical forest canopy trees: do universal rules apply? Tree Physiol 21:19–26PubMedCrossRefPubMedCentralGoogle Scholar
  43. Meinzer FC, James SA, Goldstein G, Woodruff D (2003) Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees. Plant Cell Environ 26:1147–1155CrossRefGoogle Scholar
  44. Meinzer FC, Woodruff DR, Dome J-C, Goldstein G, Campanello PI, Gatti MG, Villalobos-Vega R (2008) Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia 156:31–41PubMedCrossRefPubMedCentralGoogle Scholar
  45. Mencuccini M (2003) The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ 26:163–182CrossRefGoogle Scholar
  46. Moles AT (2018) Being John Harper: using evolutionary ideas to improve understanding of global patterns in plant traits. J Ecol 106:1–18CrossRefGoogle Scholar
  47. Moorcroft PR, Hurtt GC, Pacala SW (2001) A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol Monogr 71:557–586CrossRefGoogle Scholar
  48. Moore GW, Orozco G, Aparecido LM, Miller GR (2018) Upscaling transpiration in diverse forests: insights from a tropical premontane site. Ecohydrology 11:e1920CrossRefGoogle Scholar
  49. Moreira M et al (1997) Contribution of transpiration to forest ambient vapor based on isotopic measurements. Glob Change Biol 3:439–450CrossRefGoogle Scholar
  50. Morris H, Plavcová L, Cvecko P, Fichtler E, Gillingham MA, Martínez-Cabrera HI, McGlinn HI, Wheeler DJ, Zheng E, Ziemińska K, Jansen S (2016) A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytol 209:1553–1565PubMedCrossRefPubMedCentralGoogle Scholar
  51. Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Annu Rev Ecol Syst 17:67–88CrossRefGoogle Scholar
  52. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853CrossRefGoogle Scholar
  53. Nejad AR, Van Meeteren U (2007) The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity. J Exp Bot 58:627–636PubMedCrossRefPubMedCentralGoogle Scholar
  54. Novick KA et al (2016) The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat Clim Change 6:1023CrossRefGoogle Scholar
  55. Oishi AC, Hawthorne DA, Oren R (2016) Baseliner: an open-source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX 5:139–143CrossRefGoogle Scholar
  56. Okamoto M, Tanaka Y, Abrams SR, Kamiya Y, Seki M, Nambara E (2009) High humidity induces abscisic acid 8 ‘-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in arabidopsis. Plant Physiol 149L:825–834CrossRefGoogle Scholar
  57. Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Schäfer KVR (1999) Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ 22:1515–1526CrossRefGoogle Scholar
  58. Poyatos R, Martínez-Vilalta J, Čermák J, Ceulemans R, Granier A, Irvine J, Köstner B, Lagergren F, Meiresonne L, Nadezhdina N, Zimmermann R, Llorens P, Mencuccini M (2007) Plasticity in hydraulic architecture of Scots pine across Eurasia. Oecologia 153:245–259PubMedCrossRefPubMedCentralGoogle Scholar
  59. Poyatos R, Granda V, Molowny-Horas R, Mencuccini M, Steppe K, Martínez-Vilalta J (2016) SAPFLUXNET: towards a global database of sap flow measurements. Tree Physiol 36:1449–1455PubMedCrossRefPubMedCentralGoogle Scholar
  60. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  61. Reich PB (2014) The world-wide ‘fast–slow’plant economics spectrum: a traits manifesto. J Ecol 102:275–301CrossRefGoogle Scholar
  62. Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 94:13730–13734PubMedCrossRefPubMedCentralGoogle Scholar
  63. Richards PW (1952) The tropical rain forest; an ecological study. At The University Press, CambridgeGoogle Scholar
  64. Schachtman DP, Goodger JQ (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13:281–287PubMedCrossRefPubMedCentralGoogle Scholar
  65. Schlesinger WH, Jasechko S (2014) Transpiration in the global water cycle. Agric For Meteorol 189:115–117CrossRefGoogle Scholar
  66. Schulze E-D, Lange OL, Buschbom U, Kappen L, Evenari M (1972) Stomatal responses to changes in humidity in plants growing in the desert. Planta 108:259–270PubMedCrossRefPubMedCentralGoogle Scholar
  67. Slot M, Winter K (2017) In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes. New Phytol 214:1103–1117PubMedCrossRefPubMedCentralGoogle Scholar
  68. Sperry JS, Venturas MD, Anderegg WR, Mencuccini M, Mackay DS, Wang Y, Love DM (2017) Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant Cell Environ 40:816–830PubMedCrossRefPubMedCentralGoogle Scholar
  69. Stahl C, Burban B, Wagner F, Goret JY, Bompy F, Bonal D (2013a) Influence of seasonal variations in soil water availability on gas exchange of tropical canopy trees. Biotropica 45:155–164CrossRefGoogle Scholar
  70. Stahl C, Hérault B, Rossi V, Burban B, Bréchet C, Bonal D (2013b) Depth of soil water uptake by tropical rainforest trees during dry periods: does tree dimension matter? Oecologia 173:1191–1201PubMedCrossRefPubMedCentralGoogle Scholar
  71. Steppe K, De Pauw DJ, Doody TM, Teskey RO (2010) A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agric For Meteorol 150:1046–1056CrossRefGoogle Scholar
  72. Torre S, Fjeld T (2001) Water loss and postharvest characteristics of cut roses grown at high or moderate relative air humidity. Sci Hortic 89:217–226CrossRefGoogle Scholar
  73. Torre S, Fjeld T, Gislerød HR, Moe R (2003) Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate or high air humidity. J Am Soc Hortic Sci 128:598–602CrossRefGoogle Scholar
  74. Wolf A, Anderegg WR, Pacala SW (2016) Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proc Natl Acad Sci 113:E7222–E7230PubMedCrossRefPubMedCentralGoogle Scholar
  75. Wright IJ et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827CrossRefGoogle Scholar
  76. Wright IJ et al (2005) Modulation of leaf economic traits and trait relationships byclimate. Glob Ecol Biogeogr 14:411–421CrossRefGoogle Scholar
  77. Wright IJ et al (2007) Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann Bot 99:1003–1015PubMedCrossRefPubMedCentralGoogle Scholar
  78. Xu X, Medvigy D, Powers JS, Becknell JM, Guan K (2016) Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytol 212:80–95PubMedCrossRefPubMedCentralGoogle Scholar
  79. Zemp DC, Schleussner CF, Barbosa HMJ, Van der Ent RJ, Donges JF, Heinke J, Sampaio G, Rammig A (2014) On the importance of cascading moisture recycling in South America. Atmos Chem Phys 14:13337–13359CrossRefGoogle Scholar
  80. Zhang K, Kimball JS, Nemani RR, Running SW, Hong Y, Gourley JJ, Yu Z (2015) Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci Rep 5:15956.  https://doi.org/10.1038/srep15956 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhu SD, Song JJ, Li RH, Ye Q (2013) Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests. Plant Cell Environ 36:879–891PubMedCrossRefPubMedCentralGoogle Scholar
  82. Ziemińska K, Westoby M, Wright IJ (2015) Broad anatomical variation within a narrow wood density range—a study of twig wood across 69 Australian angiosperms. PLoS One 10:e0124892PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Charlotte Grossiord
    • 1
    • 2
    Email author
  • Bradley Christoffersen
    • 3
  • Aura M. Alonso-Rodríguez
    • 4
  • Kristina Anderson-Teixeira
    • 5
    • 6
  • Heidi Asbjornsen
    • 7
  • Luiza Maria T. Aparecido
    • 8
    • 9
  • Z. Carter Berry
    • 10
  • Christopher Baraloto
    • 11
  • Damien Bonal
    • 12
  • Isaac Borrego
    • 2
  • Benoit Burban
    • 13
  • Jeffrey Q. Chambers
    • 14
    • 15
  • Danielle S. Christianson
    • 16
  • Matteo Detto
    • 17
    • 18
  • Boris Faybishenko
    • 14
  • Clarissa G. Fontes
    • 19
  • Claire Fortunel
    • 20
    • 21
  • Bruno O. Gimenez
    • 22
  • Kolby J. Jardine
    • 15
  • Lara Kueppers
    • 14
  • Gretchen R. Miller
    • 23
  • Georgianne W. Moore
    • 9
  • Robinson Negron-Juarez
    • 14
  • Clément Stahl
    • 13
  • Nathan G. Swenson
    • 24
  • Volodymyr Trotsiuk
    • 1
    • 25
    • 26
  • Charu Varadharajan
    • 14
  • Jeffrey M. Warren
    • 27
  • Brett T. Wolfe
    • 18
    • 28
  • Liang Wei
    • 2
  • Tana E. Wood
    • 4
  • Chonggang Xu
    • 2
  • Nate G. McDowell
    • 29
  1. 1.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
  2. 2.Earth and Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Department of Biology and School of Earth, Environmental, and Marine SciencesUniversity of Texas Rio Grande ValleyEdinburgUSA
  4. 4.USDA Forest ServiceInternational Institute of Tropical ForestryRío PiedrasUSA
  5. 5.Center for Tropical Forest Science-Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanama CityPanama
  6. 6.Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalUSA
  7. 7.Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamUSA
  8. 8.School of Life SciencesArizona State UniversityTempeUSA
  9. 9.Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationUSA
  10. 10.Schmid College of Science and TechnologyChapman UniversityOrangeUSA
  11. 11.Department of Biological Sciences, International Center for Tropical Botany (ICTB)Florida International UniversityMiamiUSA
  12. 12.Université de Lorraine, AgroParisTech, INRA, UMR SilvaNancyFrance
  13. 13.INRA, UMR EcoFoG, CNRS, Cirad, AgroParisTech, Université des AntillesUniversité de GuyaneKourouFrance
  14. 14.Department of GeographyUniversity of CaliforniaBerkeleyUSA
  15. 15.Climate and Ecosystem Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  16. 16.Computational Research DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  17. 17.Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUSA
  18. 18.Center for Tropical Forest ScienceSmithsonian Tropical Research InstitutePanama CityPanama
  19. 19.Department of Integrative BiologyUniversity of California BerkeleyBerkeleyUSA
  20. 20.Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
  21. 21.AMAP (botAnique et Modélisation de l’Architecture des Plantes et des végétations), IRD, CIRAD, CNRS, INRAUniversité de MontpellierMontpellierFrance
  22. 22.Instituto Nacional de Pesquisas da Amazônia (INPA)ManausBrazil
  23. 23.Zachry Department of Civil EngineeringTexas A&M UniversityCollege StationUSA
  24. 24.Department of BiologyUniversity of MarylandCollege ParkUSA
  25. 25.ETH Zurich, Department of Environmental Systems ScienceInstitute of Agricultural SciencesZurichSwitzerland
  26. 26.Faculty of Forestry and Wood SciencesCzech University of Life Sciences PragueSuchdolCzech Republic
  27. 27.Environmental Sciences Division, Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeUSA
  28. 28.School of Renewable Natural ResourcesLouisiana State UniversityBaton RougeUSA
  29. 29.Earth Systems Science DivisionPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations