Advertisement

Oecologia

pp 1–13 | Cite as

Habitats shape taxonomic and functional composition of Neotropical ant assemblages

  • Mélanie FichauxEmail author
  • Benoît Béchade
  • Julian Donald
  • Arthur Weyna
  • Jacques Hubert Charles Delabie
  • Jérôme Murienne
  • Christopher Baraloto
  • Jérôme Orivel
Community ecology – original research

Abstract

Determining assembly rules of co-occurring species persists as a fundamental goal in community ecology. At local scales, the relative importance of environmental filtering vs. competitive exclusion remains a subject of debate. In this study, we assessed the relative importance of habitat filtering and competition in structuring understory ant communities in tropical forests of French Guiana. Leaf-litter ants were collected using pitfall and Winkler traps across swamp, slope and plateau forests near Saül, French Guiana. We used a combination of univariate and multivariate analyses to evaluate trait response of ants to habitat characteristics. Null model analyses were used to investigate the effects of habitat filtering and competitive interactions on community assembly at the scale of assemblages and sampling points, respectively. Swamp forests presented a much lower taxonomic and functional richness compared to slope and plateau forests. Furthermore, marked differences in taxonomic and functional composition were observed between swamp forests and slope or plateau forests. We found weak evidence for competitive exclusion based on null models. Nevertheless, the contrasting trait composition observed between habitats revealed differences in the ecological attributes of the species in the different forest habitats. Our analyses suggest that competitive interactions may not play an important role in structuring leaf-litter ant assemblages locally. Rather, habitats are responsible for driving both taxonomic and functional composition of ant communities.

Keywords

Formicidae Traits Functional diversity Habitat filtering Rainforest 

Notes

Acknowledgements

Financial support for this study was provided by an Investissement d’Avenir grant of the Agence Nationale de la Recherche (CEBA: ANR-10-LABX-25-01) through a PhD fellowship to MF and the funding of the DIADEMA project (Dissecting Amazonian Diversity by Enhancing a Multiple taxonomic-groups approach), by the Programme Convergence 2007–2013, Région Guyane from the European community (BREGA, 757/2014/SGAR/DE/BSF) and by the PO-FEDER 2014-2020 Région Guyane (BING, GY0007194). JHCD acknowledges his research grant from CNPq.

Author contribution statement

JO and CB designed protocol and methodology. JO and JD carried out the field sampling. MF and JD sorted specimen to morphospecies and JHCD supervised species identifications. JM performed the molecular analyses. BB and AW performed the morphological measurements. MF analysed the data and wrote the manuscript, with comments from all authors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2019_4341_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)
442_2019_4341_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 18 kb)
442_2019_4341_MOESM3_ESM.docx (38 kb)
Supplementary material 3 (DOCX 39 kb)
442_2019_4341_MOESM4_ESM.docx (15 kb)
Supplementary material 4 (DOCX 15 kb)
442_2019_4341_MOESM5_ESM.docx (26 kb)
Supplementary material 5 (DOCX 27 kb)
442_2019_4341_MOESM6_ESM.docx (15 kb)
Supplementary material 6 (DOCX 16 kb)
442_2019_4341_MOESM7_ESM.docx (17 kb)
Supplementary material 7 (DOCX 18 kb)

References

  1. Agosti D, Alonso LE (2000) The ALL protocol: a standard protocol for the collection of ground-dwelling ants. In: Agosti D, Majer J, Alonso LE, Schultz T (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, pp 204–206Google Scholar
  2. Allié E, Pélissier R, Engel J et al (2015) Pervasive local-scale tree-soil habitat association in a tropical forest community. PLoS One 10:e0141488.  https://doi.org/10.1371/journal.pone.0141488 CrossRefGoogle Scholar
  3. Arnan X, Cerdá X, Retana J (2014) Ant functional responses along environmental gradients. J Anim Ecol 83:1398–1408.  https://doi.org/10.1111/1365-2656.12227 CrossRefGoogle Scholar
  4. Arnan X, Arcoverde GB, Pie MR et al (2018) Increased anthropogenic disturbance and aridity reduce phylogenetic and functional diversity of ant communities in Caatinga dry forest. Sci Total Environ 631–632:429–438.  https://doi.org/10.1016/j.scitotenv.2018.03.037 CrossRefGoogle Scholar
  5. Baccaro FB, Rocha IF, del Aguila BEG et al (2013) Changes in ground-dwelling ant functional diversity are correlated with water-table level in an Amazonian terra firme forest. Biotropica 45:755–763.  https://doi.org/10.1111/btp.12055 CrossRefGoogle Scholar
  6. Baraloto C, Morneau F, Bonal D et al (2007) Seasonal water stress tolerance and habitat associations within four Neotropical tree genera. Ecology 88:478–489.  https://doi.org/10.1890/0012-9658(2007)88%5b478:SWSTAH%5d2.0.CO;2 CrossRefGoogle Scholar
  7. Baraloto C, Rabaud S, Molto Q et al (2011) Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests. Glob Change Biol 17:2677–2688.  https://doi.org/10.1111/j.1365-2486.2011.02432.x CrossRefGoogle Scholar
  8. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143.  https://doi.org/10.1111/j.1466-8238.2009.00490.x CrossRefGoogle Scholar
  9. Baselga A, Orme CDL (2012) betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812.  https://doi.org/10.1111/j.2041-210X.2012.00224.x CrossRefGoogle Scholar
  10. Basset Y, Cizek L, Cuénoud P et al (2012) Arthropod diversity in a tropical forest. Science 338:1481–1484.  https://doi.org/10.1126/science.1226727 CrossRefGoogle Scholar
  11. Basset Y, Cizek L, Cuénoud P et al (2015) Arthropod distribution in a tropical rainforest: tackling a four dimensional puzzle. PLoS One.  https://doi.org/10.1371/journal.pone.0144110 Google Scholar
  12. Bellwood DR, Wainwright PC, Fulton CJ, Hoey AS (2006) Functional versatility supports coral reef biodiversity. Proc R Soc B Biol Sci 273:101–107.  https://doi.org/10.1098/rspb.2005.3276 CrossRefGoogle Scholar
  13. Bestelmeyer BT, Agosti D, Alonso LE et al (2000) Field techniques for the study of ground-dwelling ants: an overview, description, and evaluation. In: Agosti D, Majer J, Alonso LE, Schultz T (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, pp 122–144Google Scholar
  14. Bihn JH, Gebauer G, Brandl R (2010) Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology 91:782–792.  https://doi.org/10.1890/08-1276.1 CrossRefGoogle Scholar
  15. Blaimer BB, Brady SG, Schultz TR, Fisher BL (2015) Functional and phylogenetic approaches reveal the evolution of diversity in a hyper diverse biota. Ecography 38:901–912.  https://doi.org/10.1111/ecog.01370 CrossRefGoogle Scholar
  16. Brandão CRF, Silva RR, Delabie JHC (2012) Neotropical ants (Hymenoptera) functional groups: nutritional and applied implications. In: Parra JRP (ed) Insect bioecology and nutrition for integrated pest management. CRC, Boca Raton, pp 213–236CrossRefGoogle Scholar
  17. Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087.  https://doi.org/10.1111/j.1365-2664.2011.02048.x CrossRefGoogle Scholar
  18. Céréghino R, Pillar VD, Srivastava DS et al (2018) Constraints on the functional trait space of aquatic invertebrates in bromeliads. Funct Ecol 32:2435–2447.  https://doi.org/10.1111/1365-2435.13141 CrossRefGoogle Scholar
  19. Chen X, Adams B, Bergeron C et al (2015) Ant community structure and response to disturbances on coastal dunes of Gulf of Mexico. J Insect Conserv 19:1–13.  https://doi.org/10.1007/s10841-014-9722-9 CrossRefGoogle Scholar
  20. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366.  https://doi.org/10.1146/annurev.ecolsys.31.1.343 CrossRefGoogle Scholar
  21. Chun J-H, Lee C-B (2018) Partitioning the regional and local drivers of phylogenetic and functional diversity along temperate elevational gradients on an East Asian peninsula. Sci Rep 8:2853.  https://doi.org/10.1038/s41598-018-21266-4 CrossRefGoogle Scholar
  22. Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126.  https://doi.org/10.1890/07-1134.1 CrossRefGoogle Scholar
  23. Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471.  https://doi.org/10.1890/0012-9658(2006)87%5b1465:ATTFHF%5d2.0.CO;2 CrossRefGoogle Scholar
  24. Davidson DW, Cook SC, Snelling RR (2004) Liquid-feeding performances of ants (Formicidae): ecological and evolutionary implications. Oecologia 139:255–266.  https://doi.org/10.1007/s00442-004-1508-4 CrossRefGoogle Scholar
  25. Delabie JHC, Fisher BL, Majer JD, Wright IW (2000) Sampling effort and choice of method. In: Agosti D, Majer J, Alonso LE, Schultz T (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, pp 145–154Google Scholar
  26. Diamond JM (1975) Assembly of species communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, pp 342–444Google Scholar
  27. Díaz S, Kattge J, Cornelissen JHC et al (2016) The global spectrum of plant form and function. Nature 529:167–171.  https://doi.org/10.1038/nature16489 CrossRefGoogle Scholar
  28. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366.  https://doi.org/10.2307/2963459 Google Scholar
  29. Ellis LM, Crawford CS, Molles MC Jr (2001) Influence of annual flooding on terrestrial arthropod assemblages of a Rio Grande riparian forest. Regul Rivers Res Manag 17:1–20.  https://doi.org/10.1002/1099-1646(200101/02)17:1<1::AID-RRR603>3.0.CO;2-L CrossRefGoogle Scholar
  30. Ellwood MDF, Manica A, Foster WA (2009) Stochastic and deterministic processes jointly structure tropical arthropod communities. Ecol Lett 12:277–284.  https://doi.org/10.1111/j.1461-0248.2009.01284.x CrossRefGoogle Scholar
  31. Feener DH Jr, Lighton JRB, Bartholomew GA (1988) Curvilinear allometry, energetics and foraging ecology: a comparison of leaf-cutting ants and army ants. Funct Ecol 2:509–520.  https://doi.org/10.2307/2389394 CrossRefGoogle Scholar
  32. Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7:1221–1244.  https://doi.org/10.1023/A:1008891901953 CrossRefGoogle Scholar
  33. Fowler HG, Forti LC, Brandão CRF et al (1991) Ecologia nutricional de formigas. In: Panizzi AR, Parra JRP (eds) Ecologia nutricional de insetos e suas implicaçoes no manejo de pragas. Editora Manole, São Paulo, pp 131–223Google Scholar
  34. Gotelli NJ, McCabe DJ (2002) Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83:2091–2096.  https://doi.org/10.2307/3072040 CrossRefGoogle Scholar
  35. Gotelli NJ, Ellison AM, Dunn RR, Sanders NJ (2011) Counting ants (Hymenoptera: Formicidae): biodiversity sampling and statistical analysis for myrmecologists. Myrmecol News 15:13–19.  https://doi.org/10.1111/j.1461-0248.2007.01045.x Google Scholar
  36. Gronenberg W, Tautz J, Hölldobler B (1993) Fast trap jaws and giant neurons in the ant Odontomachus. Science 262:561–563.  https://doi.org/10.1126/science.262.5133.561 CrossRefGoogle Scholar
  37. Helmus MR, Bland TJ, Williams CK, Ives AR (2007) Phylogenetic measures of biodiversity. Am Nat 169:E68–E83.  https://doi.org/10.1086/511334 CrossRefGoogle Scholar
  38. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, CambridgeCrossRefGoogle Scholar
  39. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  40. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427.  https://doi.org/10.1101/SQB.1957.022.01.039 CrossRefGoogle Scholar
  41. Kaspari M, Weiser MD (1999) The size-grain hypothesis and interspecific scaling in ants. Funct Ecol 13:530–538.  https://doi.org/10.1046/j.1365-2435.1999.00343.x CrossRefGoogle Scholar
  42. Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164.  https://doi.org/10.2307/3235676 CrossRefGoogle Scholar
  43. Kocher A, Gantier J-C, Gaborit P et al (2016) Vector soup: high-throughput identification of Neotropical phlebotomine sand flies using metabarcoding. Mol Ecol Resour 17:172–182.  https://doi.org/10.1111/1755-0998.12556 CrossRefGoogle Scholar
  44. Kraft NJB, Ackerly DD (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol Monogr 80:401–422.  https://doi.org/10.1890/09-1672.1 CrossRefGoogle Scholar
  45. Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322:580–582.  https://doi.org/10.1126/science.1160662 CrossRefGoogle Scholar
  46. Kunstler G, Lavergne S, Courbaud B et al (2012) Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecol Lett 15:831–840.  https://doi.org/10.1111/j.1461-0248.2012.01803.x CrossRefGoogle Scholar
  47. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305.  https://doi.org/10.1890/08-2244.1 CrossRefGoogle Scholar
  48. Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12Google Scholar
  49. Lamarre GPA, Hérault B, Fine PVA et al (2016) Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests. J Anim Ecol 85:227–239.  https://doi.org/10.1111/1365-2656.12445 CrossRefGoogle Scholar
  50. Lavorel S, Grigulis K, McIntyre S et al (2008) Assessing functional diversity in the field—methodology matters! Funct Ecol 22:134–147.  https://doi.org/10.1111/j.1365-2435.2007.01339.x Google Scholar
  51. Lessard J-P, Sackett TE, Reynolds WN et al (2011) Determinants of the detrital arthropod community structure: the effects of temperature and resources along an environmental gradient. Oikos 320:333–343.  https://doi.org/10.1111/j.1600-0706.2010.18772.x CrossRefGoogle Scholar
  52. Liu C, Guénard B, Blanchard B et al (2016) Reorganization of taxonomic, functional, and phylogenetic ant biodiversity after conversion to rubber plantation. Ecol Monogr 86:215–227.  https://doi.org/10.1890/15-1464.1 CrossRefGoogle Scholar
  53. MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385.  https://doi.org/10.1086/282505 CrossRefGoogle Scholar
  54. Maire V, Gross N, Börger L et al (2012) Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytol 196:497–509.  https://doi.org/10.1111/j.1469-8137.2012.04287.x CrossRefGoogle Scholar
  55. Martello F, de Bello F, Santina M et al (2018) Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Sci Rep 8:3266.  https://doi.org/10.1038/s41598-018-20823-1 CrossRefGoogle Scholar
  56. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185.  https://doi.org/10.1016/j.tree.2006.02.002 CrossRefGoogle Scholar
  57. Mertl AL, Ryder Wilkie KT, Traniello JFA (2009) Impact of flooding on the species richness, density and composition of Amazonian litter-nesting ants. Biotropica 41:633–641.  https://doi.org/10.1111/j.1744-7429.2009.00520.x CrossRefGoogle Scholar
  58. Mouillot D, Culiolo JM, Pelletier D, Tomasini JA (2008) Do we protect biological originality in protected areas? A new index and an application to the Bonifacio Strait Natural Reserve. Biol Conserv 141:1569–1580.  https://doi.org/10.1016/j.biocon.2008.04.002 CrossRefGoogle Scholar
  59. Mouillot D, Graham NAJ, Villéger S et al (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177.  https://doi.org/10.1016/j.tree.2012.10.004 CrossRefGoogle Scholar
  60. Novotny V, Basset Y (2005) Host specificity of insect herbivores in tropical forests. Proc R Soc B Biol Sci 272:1083–1090.  https://doi.org/10.1098/rspb.2004.3023 CrossRefGoogle Scholar
  61. Oksanen J, Blanchet FG, Friendly M, et al (2017) vegan: community ecology package. R package version 2.4-6Google Scholar
  62. Pielou EC (1975) Ecological diversity. Wiley, New YorkGoogle Scholar
  63. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  64. Roberts DW (2016) labdsv: ordination and multivariate analysis for ecology. R package version 1.8-0Google Scholar
  65. Silva RR, Brandão CRF (2010) Morphological patterns and community organization in leaf-litter ant assemblages. Ecol Monogr 80:107–124.  https://doi.org/10.1890/08-1298.1 CrossRefGoogle Scholar
  66. Silva RR, Brandão CRF (2014) Ecosystem-wide morphological structure of leaf-litter ant communities along a tropical latitudinal gradient. PLoS One 9:e93049.  https://doi.org/10.1371/journal.pone.0093049 CrossRefGoogle Scholar
  67. Silva FHO, Delabie JHC, dos Santos GB et al (2013) Mini-Winkler extractor and pitfall trap as complementary methods to sample Formicidae. Neotrop Entomol 42:351–358.  https://doi.org/10.1007/s13744-013-0131-7 CrossRefGoogle Scholar
  68. Silva RR, Del Toro I, Brandão CRF, Ellison AM (2016) Morphological structure of ant assemblages in tropical and temperate forests. bioRxiv.  https://doi.org/10.1101/065417 Google Scholar
  69. Soares SDA, Suarez YR, Fernandes WD et al (2013) Temporal variation in the composition of ant assemblages (Hymenoptera, Formicidae) on trees in the Pantanal floodplain, Mato Grosso do Sul, Brazil. Rev Bras Entomol 57:84–90.  https://doi.org/10.1590/S0085-56262013000100013 CrossRefGoogle Scholar
  70. Swenson NG, Enquist BJ (2009) Opposing assembly mechanisms in a Neotropical dry forest: implications for phylogenetic and functional community ecology. Ecology 90:2161–2170.  https://doi.org/10.1890/08-1025.1 CrossRefGoogle Scholar
  71. Swenson NG, Enquist BJ, Thompson J, Zimmerman JK (2007) The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology 88:1770–1780.  https://doi.org/10.1890/06-1499.1 CrossRefGoogle Scholar
  72. Swenson NG, Enquist BJ, Pither J et al (2012) The biogeography and filtering of woody plant functional diversity in North and South America. Glob Ecol Biogeogr 21:798–808.  https://doi.org/10.1111/j.1466-8238.2011.00727.x CrossRefGoogle Scholar
  73. Trisos CH, Petchey OL, Tobias JA (2014) Unraveling the interplay of community assembly processes acting on multiple niche axes across spatial scales. Am Nat 184:593–608.  https://doi.org/10.1086/678233 CrossRefGoogle Scholar
  74. Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301.  https://doi.org/10.1890/07-1206.1 CrossRefGoogle Scholar
  75. Villéger S, Grenouillet G, Brosse S (2013) Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Glob Ecol Biogeogr 22:671–681.  https://doi.org/10.1111/geb.12021 CrossRefGoogle Scholar
  76. Weber NA (1938) The biology of the fungus-growing ants. Part 4. Additional new forms. Part 5. The Attini of Bolivia. Rev Entomol 7:154–206Google Scholar
  77. Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74:159–164.  https://doi.org/10.2307/3545686 CrossRefGoogle Scholar
  78. Weiher E, Keddy P (2001) Ecological assembly rules: perspectives, advances, retreats. Cambridge University Press, CambridgeGoogle Scholar
  79. Weiser MD, Kaspari M (2006) Ecological morphospace of New World ants. Ecol Entomol 31:131–142.  https://doi.org/10.1111/j.0307-6946.2006.00759.x CrossRefGoogle Scholar
  80. Wiescher PT, Pearce-Duvert JMC, Feener DH (2012) Assembling an ant community: species functional traits reflect environmental filtering. Oecologia 169:1063–1074.  https://doi.org/10.1007/s00442-012-2262-7 CrossRefGoogle Scholar
  81. Winemiller KO, Fitzgerald DB, Bower LM, Pianka ER (2015) Functional traits, convergent evolution, and periodic tables of niches. Ecol Lett 18:737–751.  https://doi.org/10.1111/ele.12462 CrossRefGoogle Scholar
  82. Yates ML, Andrew NR, Binns M, Gibb H (2014) Morphological traits: predictable responses to macrohabitats across a 300 km scale. PeerJ 2:e271.  https://doi.org/10.7717/peerj.271 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mélanie Fichaux
    • 1
    Email author
  • Benoît Béchade
    • 1
  • Julian Donald
    • 1
    • 2
  • Arthur Weyna
    • 1
  • Jacques Hubert Charles Delabie
    • 3
    • 4
  • Jérôme Murienne
    • 2
  • Christopher Baraloto
    • 5
  • Jérôme Orivel
    • 1
  1. 1.CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CIRAD, INRAUniversité de Guyane, Université des Antilles, Campus AgronomiqueKourou CedexFrance
  2. 2.Laboratoire EDB (UMR 5174: CNRS, Université Toulouse 3 Paul Sabatier, IRD)Université Paul SabatierToulouse Cedex 9France
  3. 3.Laboratório de MirmecologiaCEPEC, CEPLACItabunaBrazil
  4. 4.Departamento de Ciências Agrárias e AmbientaisUniversidade Estadual de Santa CruzIlheusBrazil
  5. 5.International Center for Tropical Botany, Department of Biological SciencesFlorida International UniversityMiamiUSA

Personalised recommendations