Advertisement

Oecologia

, Volume 189, Issue 2, pp 375–383 | Cite as

Light limitation and partial mycoheterotrophy in rhizoctonia-associated orchids

  • Julienne M.-I. Schweiger
  • Christian Kemnade
  • Martin I. Bidartondo
  • Gerhard GebauerEmail author
Physiological ecology – original research

Abstract

Partially mycoheterotrophic (PMH) plants obtain organic molecules from their mycorrhizal fungi in addition to carbon (C) fixed by photosynthesis. Some PMH orchids associated with ectomycorrhizal fungi have been shown to flexibly adjust the proportion of organic molecules obtained from fungi according to the habitat’s light level. We hypothesise that Neottia ovata and Ophrys insectifera, two orchids associated with saprotrophic rhizoctonia fungi, are also able to increase uptake of organic molecules from fungi as irradiance levels decrease. We continuously measured light availability for individuals of N. ovata and O. insectifera at a grassland and a forest during orchid flowering and fruiting. We repeatedly sampled leaves of N. ovata, O. insectifera and autotrophic reference species for stable isotope natural abundances (δ13C, δ15N, δ2H, δ18O) and C and N concentrations. We found significant 13C enrichment in both orchids relative to autotrophic references at the forest but not the grassland, and significant 2H enrichment at both sites. The 13C enrichment in O. insectifera was linearly correlated with the habitat’s irradiance levels. We conclude that both species can be considered as PMH and at least in O. insectifera, the degree of partial mycoheterotrophy can be fine-tuned according to light availability. However, exploitation of mycorrhizal fungi appears less flexible in saprotroph-associated orchids than in orchids associated with ectomycorrhizal fungi.

Keywords

Neottia ovata Ophrys insectifera Orchidaceae Stable isotopes Mycoheterotrophy Mycorrhiza 

Notes

Acknowledgements

The authors thank Christine Tiroch and Petra Eckert (BayCEER—Laboratory of Isotope Biogeochemistry) for skilful technical assistance with stable isotope abundance measurements. We also thank the Regierung von Oberfranken for authorisation to collect the orchid samples.

Author contribution statement

GG conceived this study. JM-IS and CK conducted fieldwork and prepared samples for stable isotope analyses. JM-IS and MIB generated sequencing data and conducted molecular analyses, JM-IS performed the statistical analyses and drafted the manuscript. All authors contributed to the manuscript.

Funding

The study was funded by the German Research Foundation (DFG Ge 565/7-2).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2019_4340_MOESM1_ESM.pdf (115 kb)
Suppl. Fig. 1 Mean irradiance at (a) the grassland site and (b) the forest site overlaid by the mean carbon concentration ± SD; yellow triangles for Neottia ovata and blue circles for Ophrys insectifera; unfilled symbols at the grassland site, filled symbols at the forest site; solid green lines represent the mean values of the autotrophic references ± SD (dashed lines). The figure is available in colour in the online version
442_2019_4340_MOESM2_ESM.pdf (349 kb)
Suppl. Fig. 2 Enrichment factors ε18O and ε13C of Neottia ovata (yellow triangles) and Ophrys insectifera (blue circles) at the grassland site (unfilled symbols) and the forest site (filled symbols) (n = 5 per species and site); the green box represents mean enrichment factors ± SD for the autotrophic reference plants (n = 42) that were sampled together with the two orchid species whereas mean ε values of reference plants are zero by definition. The figure is available in colour in the online version

References

  1. Abadie J-C, Püttsepp Ü, Gebauer G et al (2006) Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and nonphotosynthetic individuals. Can J Bot 84:1462–1477.  https://doi.org/10.1139/b06-101 CrossRefGoogle Scholar
  2. Bidartondo MI, Duckett JG (2010) Conservative ecological and evolutionary patterns in liverwort-fungal symbioses. Proc R Soc B Biol Sci 277:485–492.  https://doi.org/10.1098/rspb.2009.1458 CrossRefGoogle Scholar
  3. Bidartondo MI, Burghardt B, Gebauer G et al (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc B Biol Sci 271:1799–1806.  https://doi.org/10.1098/rspb.2004.2807 CrossRefGoogle Scholar
  4. Bolin JF, Tennakoon KU, Bin Abdul Majid M, Cameron DD (2015) Isotopic evidence of partial mycoheterotrophy in Burmannia coelestis (Burmanniaceae). Plant Species Biol 32:74–80.  https://doi.org/10.1111/1442-1984.12116 CrossRefGoogle Scholar
  5. Bowler R, Massicotte HB, Fredeen AL (2017) Combining leaf gas-exchange and stable carbon isotopes to assess mycoheterotrophy in three species of Pyroleae. Botany 95:1071–1080.  https://doi.org/10.1139/cjb-2017-0007 CrossRefGoogle Scholar
  6. Cameron DD, Bolin JF (2010) Isotopic evidence of partial mycoheterotrophy in the Gentianaceae: Bartonia virginica and Obolaria virginica as case studies. Am J Bot 97:1272–1277.  https://doi.org/10.3732/ajb.0900292 CrossRefPubMedGoogle Scholar
  7. Cameron DD, Preiss K, Gebauer G, Read DJ (2009) The chlorophyll-containing orchid Corallorhiza trifida derives little carbon through photosynthesis. New Phytol 183:358–364.  https://doi.org/10.1111/j.1469-8137.2009.02853.x CrossRefPubMedGoogle Scholar
  8. Eiler A (2006) Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Appl Environ Microbiol 72:7431–7437.  https://doi.org/10.1128/AEM.01559-06 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ellenberg H, Weber HE, Düll R et al (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18. Verlag Erich Goltze, Göttingen, pp 1–248Google Scholar
  10. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  11. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118.  https://doi.org/10.1111/j.1365-294x.1993.tb00005.x CrossRefPubMedGoogle Scholar
  12. Gebauer G (2005) Partnertausch im dunklen Wald—Stabile Isotope geben neue Einblicke in das Ernährungsverhalten von Orchideen. In: Bayerische Akademie der Wissenschaften (ed) Auf Spurensuche in der Natur: Stabile Isotope in der ökologischen Forschung. Rundgespräch der Kommission für Ökologie, vol. 30. Verlag Dr. Friedrich Pfeil, München, pp 55–67Google Scholar
  13. Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223.  https://doi.org/10.1046/j.1469-8137.2003.00872.x CrossRefGoogle Scholar
  14. Gebauer G, Schulze E-D (1991) Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. Oecologia 87:198–207.  https://doi.org/10.1007/BF00325257 CrossRefPubMedGoogle Scholar
  15. Gebauer G, Schuhmacher MI, Krstić B et al (1987) Biomass production and nitrate metabolism of Atriplex hortensis L. (C3 plant) and Amaranthus retroflexus L. (C4 plant) in cultures at different levels of nitrogen supply. Oecologia 72:303–314.  https://doi.org/10.1007/BF00379283 CrossRefPubMedGoogle Scholar
  16. Gebauer G, Preiss K, Gebauer AC (2016) Partial mycoheterotrophy is more widespread among orchids than previously assumed. New Phytol 211:11–15.  https://doi.org/10.1111/nph.13865 CrossRefPubMedGoogle Scholar
  17. Gonneau C, Jersáková J, de Tredern E et al (2014) Photosynthesis in perennial mixotrophic Epipactis spp. (Orchidaceae) contributes more to shoot and fruit biomass than to hypogeous survival. J Ecol 102:1183–1194.  https://doi.org/10.1111/1365-2745.12274 CrossRefGoogle Scholar
  18. Hynson NA, Preiss K, Gebauer G, Bruns TD (2009) Isotopic evidence of full and partial myco-heterotrophy in the plant tribe Pyroleae (Ericaceae). New Phytol 182:719–726.  https://doi.org/10.1111/j.1469-8137.2009.02781.x CrossRefPubMedGoogle Scholar
  19. Hynson NA, Mambelli S, Amend AS, Dawson TE (2012) Measuring carbon gains from fungal networks in understorey plants from the tribe Pyroleae (Ericaceae): a field manipulation and stable isotope approach. Oecologia 169:307–317.  https://doi.org/10.1007/s00442-011-2198-3 CrossRefPubMedGoogle Scholar
  20. Hynson NA, Madsen TP, Selosse M-A et al (2013) The physiological ecology of mycoheterotrophy. In: Merckx V (ed) Mycoheterotrophy: the biology of plants living on fungi. Springer, New York, pp 297–342CrossRefGoogle Scholar
  21. Hynson NA, Schiebold JM-I, Gebauer G (2016) Plant family identity distinguishes patterns of carbon and nitrogen stable isotope abundance and nitrogen concentration in mycoheterotrophic plants associated with ectomycorrhizal fungi. Ann Bot 118:467–479.  https://doi.org/10.1093/aob/mcw119 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Julou T, Burghardt B, Gebauer G et al (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytol 166:639–653.  https://doi.org/10.1111/j.1469-8137.2005.01364.x CrossRefPubMedGoogle Scholar
  23. Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lallemand F, Robionek A, Courty P-E, Selosse M-A (2018) The 13C content of the orchid Epipactis palustris (L.) Crantz responds to light as in autotrophic plants. Bot Lett 40:1–9.  https://doi.org/10.1080/23818107.2017.1418430 Google Scholar
  25. Liebel HT, Bidartondo MI, Preiss K et al (2010) C and N stable isotope signatures reveal constraints to nutritional modes in orchids from the Mediterranean and Macaronesia. Am J Bot 97:903–912.  https://doi.org/10.3732/ajb.0900354 CrossRefPubMedGoogle Scholar
  26. Liebel HT, Bidartondo MI, Gebauer G (2015) Are carbon and nitrogen exchange between fungi and the orchid Goodyera repens affected by irradiance? Ann Bot 127:171–216.  https://doi.org/10.1093/aob/mcu240 Google Scholar
  27. Merckx VSFT (2013) Mycoheterotrophy: an introduction. In: Merckx V (ed) Mycoheterotrophy: the biology of plants living on fungi. Springer, New York, pp 1–17CrossRefGoogle Scholar
  28. Merckx VSFT, Kissling J, Hentrich H et al (2013) Phylogenetic relationships of the mycoheterotrophic genus Voyria and the implications for the biogeographic history of Gentianaceae. Am J Bot 100:712–721.  https://doi.org/10.3732/ajb.1200330 CrossRefPubMedGoogle Scholar
  29. Oja J, Kohout P, Tedersoo L et al (2014) Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing. New Phytol 205:1608–1618.  https://doi.org/10.1111/nph.13223 CrossRefPubMedGoogle Scholar
  30. Preiss K, Gebauer G (2008) A methodological approach to improve estimates of nutrient gains by partially myco-heterotrophic plants. Isot Environ Health Stud 44:393–401.  https://doi.org/10.1080/10256010802507458 CrossRefGoogle Scholar
  31. Preiss K, Adam IKU, Gebauer G (2010) Irradiance governs exploitation of fungi: fine-tuning of carbon gain by two partially myco-heterotrophic orchids. Proc R Soc B Biol Sci 277:1333–1336.  https://doi.org/10.1098/rspb.2009.1966 CrossRefGoogle Scholar
  32. Press MC, Shah N, Tuohy JM, Stewart GR (1987) Carbon isotope ratios demonstrate carbon flux from C4 host to C3 parasite. Plant Physiol 85:1143–1145.  https://doi.org/10.1104/pp.85.4.1143 CrossRefPubMedPubMedCentralGoogle Scholar
  33. R Development Core Team (2016) A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  34. Riess K, Oberwinkler F, Bauer R, Garnica S (2014) Communities of endophytic Sebacinales associated with roots of herbaceous plants in agricultural and grassland ecosystems are dominated by Serendipita herbamans sp. nov. PLoS One 9:1–10.  https://doi.org/10.1371/journal.pone.0094676 Google Scholar
  35. Schiebold JM-I, Bidartondo MI, Lenhard F et al (2018) Exploiting mycorrhizas in broad daylight: partial mycoheterotrophy is a common nutritional strategy in meadow orchids. J Ecol 106:168–178.  https://doi.org/10.1111/1365-2745.12831 CrossRefGoogle Scholar
  36. Schulze ED, Lange OL, Ziegler H, Gebauer G (1991) Carbon and nitrogen isotope ratios of mistletoes growing on nitrogen and non-nitrogen fixing hosts and on CAM plants in the Namib desert confirm partial heterotrophy. Oecologia 88:457–462.  https://doi.org/10.1007/BF00325262 CrossRefPubMedGoogle Scholar
  37. Schweiger JM-I, Bidartondo MI, Gebauer G (2018) Stable isotope signatures of underground seedlings reveal the organic matter gained by adult orchids from mycorrhizal fungi. Funct Ecol 32:870–881.  https://doi.org/10.1111/1365-2435.13042 CrossRefGoogle Scholar
  38. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, New YorkGoogle Scholar
  39. Suetsugu K, Ohta T, Tayasu I (2018) Partial mycoheterotrophy in the leafless orchid Cymbidium macrorhizon. Am J Bot 105:1595–1600.  https://doi.org/10.1002/ajb2.1142 CrossRefPubMedGoogle Scholar
  40. Taylor DL, McCormick MK (2008) Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol 177:1020–1033.  https://doi.org/10.1111/j.1469-8137.2007.02320.x CrossRefPubMedGoogle Scholar
  41. Tedersoo L, Pellet P, Kõljalg U, Selosse M-A (2007) Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151:206–217.  https://doi.org/10.1007/s00442-006-0581-2 CrossRefPubMedGoogle Scholar
  42. Těšitelová T, Kotilínek M, Jersáková J et al (2015) Two widespread green Neottia species (Orchidaceae) show mycorrhizal preference for Sebacinales in various habitats and ontogenetic stages. Mol Ecol 24:1122–1134.  https://doi.org/10.1111/mec.13088 CrossRefPubMedGoogle Scholar
  43. Yakir D (1992) Variations in the natural abundance of oxygen-18 and deuterium in plant carbohydrates. Plant Cell Environ 15:1005–1020.  https://doi.org/10.1111/j.1365-3040.1992.tb01652.x CrossRefGoogle Scholar
  44. Ziegler H (1988) Hydrogen isotope fractionation in plant tissues. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Ecological studies 68. Springer, Berlin, Heidelberg, pp 105–123Google Scholar
  45. Zimmer K, Hynson NA, Gebauer G et al (2007) Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. New Phytol 175:166–175.  https://doi.org/10.1111/j.1469-8137.2007.02065.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
  2. 2.Department of Life SciencesImperial College LondonLondonEngland, UK
  3. 3.Royal Botanic Gardens, KewRichmondEngland, UK

Personalised recommendations