Advertisement

Oecologia

pp 1–12 | Cite as

Spider mites escape bacterial infection by avoiding contaminated food

  • Flore Zélé
  • Gonçalo Santos-Matos
  • Alexandre R. T. Figueiredo
  • Cátia Eira
  • Catarina Pinto
  • Telma G. Laurentino
  • Élio Sucena
  • Sara Magalhães
Behavioral ecology – original research

Abstract

To fight infection, arthropods rely on the deployment of an innate immune response but also upon physical/chemical barriers and avoidance behaviours. However, most studies focus on immunity, with other defensive mechanisms being relatively overlooked. We have previously shown that the spider mite Tetranychus urticae does not mount an induced immune response towards systemic bacterial infections, entailing very high mortality rates. Therefore, we hypothesized that other defence mechanisms may be operating to minimize infection risk. Here, we test (a) if spider mites are also highly susceptible to other infection routes—spraying and feeding—and (b) if they display avoidance behaviours towards infected food. Individuals sprayed with or fed on Escherichia coli or Pseudomonas putida survived less than the control, pointing to a deficient capacity of the gut epithelium, and possibly of the cuticle, to contain bacteria. Additionally, we found that spider mites prefer uninfected food to food contaminated with bacteria, a choice that probably does not rely on olfactory cues. Our results suggest that spider mites may rely mostly on avoidance behaviours to minimize bacterial infection and highlight the multi-layered nature of immune strategies present in arthropods.

Keywords

Parasitism Immunity Behavioural avoidance Tetranychus urticae 

Notes

Acknowledgements

We thank Miodrag Grbic for the “bubble machine” and José Feijó for the air pump, both of which were necessary to make the parafilm bubbles (feeding experiments). We thank Arne Jansen and Luísa Vasconcelos for the material needed to make the Y olfactometer, and Francisco Dionísio for providing access to his laboratory, material and reagents for bacterial work. We also thank members of the Sucena and Magalhães labs for useful discussions and suggestions. This work was funded by an FCT-Tubitak agreement (FCT-TUBITAK/0001/2014) to SM and Ibrahim Cakmak. FZ was funded through an FCT Post-Doc fellowship (SFRH/BPD/125020/2016). Funding agencies did not participate in the design or analysis of experiments.

Author contribution statement

Experimental conception and design: FZ, GM, ES, SM; acquisition of data: GM, AF, CE, CP, TL; statistical analyses: FZ; paper writing: FZ, GM, SM, with input from all authors. Funding: ES and SM. All authors have read and approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

We declare that we do not have any conflict of interest.

Supplementary material

442_2018_4316_MOESM1_ESM.pdf (74 kb)
Supplementary material 1 (PDF 73 kb)
442_2018_4316_MOESM2_ESM.txt (32 kb)
Supplementary material 2 (TXT 32 kb)
442_2018_4316_MOESM3_ESM.txt (99 kb)
Supplementary material 3 (TXT 99 kb)
442_2018_4316_MOESM4_ESM.txt (2 kb)
Supplementary material 4 (TXT 2 kb)
442_2018_4316_MOESM5_ESM.txt (7 kb)
Supplementary material 5 (TXT 7 kb)
442_2018_4316_MOESM6_ESM.txt (88 kb)
Supplementary material 6 (TXT 88 kb)
442_2018_4316_MOESM7_ESM.txt (1 kb)
Supplementary material 7 (TXT 1 kb)
442_2018_4316_MOESM8_ESM.txt (11 kb)
Supplementary material 8 (TXT 11 kb)

References

  1. Aksoy H, Ozman-Sullivan S, Ocal H, Celik N, Sullivan G (2008) The effects of Pseudomonas putida biotype B on Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 46:223–230.  https://doi.org/10.1007/s10493-008-9155-9 CrossRefPubMedGoogle Scholar
  2. Altincicek B, Gross J, Vilcinskas A (2008) Wounding-mediated gene expression and accelerated viviparous reproduction of the pea aphid Acyrthosiphon pisum. Insect Mol Biol 17:711–716.  https://doi.org/10.1111/j.1365-2583.2008.00835.x CrossRefPubMedGoogle Scholar
  3. Anderson RM, May RM (1979) Population biology of infectious diseases: Part 1. Nature 280:361–367.  https://doi.org/10.1038/280361a0 CrossRefPubMedGoogle Scholar
  4. Ateyyat MA, Shatnawi M, Al-Mazra’awi M (2010) Isolation and identification of culturable forms of bacteria from the sweet potato whitefly Bemesia tabaci Genn. (Homoptera: Aleyrodidae) in Jordan. Turk J Agric Forest 34:225–234.  https://doi.org/10.3906/tar-0902-35 CrossRefGoogle Scholar
  5. Ayres JS, Schneider DS (2008) A signaling protease required for melanization in Drosophila affects resistance and tolerance of infections. PLoS Biol 6:2764–2773.  https://doi.org/10.1371/journal.pbio.0060305 CrossRefPubMedGoogle Scholar
  6. Bensoussan N, Zhurov V, Yamakawa S, O’Neil CH, Suzuki T, Grbić M, Grbić V (2018) The digestive system of the two-spotted spider mite, Tetranychus urticae koch, in the context of the mite-plant interaction. Front Plant Sci 9:1206.  https://doi.org/10.3389/fpls.2018.01206 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One.  https://doi.org/10.1371/journal.pone.0056329 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bolker BM (2008) Ecological models and data in R. Princeton University Press, New JerseyGoogle Scholar
  9. Bouwman KM, Hawley DM (2010) Sickness behaviour acting as an evolutionary trap? Male house finches preferentially feed near diseased conspecifics. Biol Lett 6:462–465.  https://doi.org/10.1098/rsbl.2010.0020 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Broadbent AB, Matteoni JA (1990) Acquisition and transmission of Pseudomonas cichorii by Liriomyza trifolii (Diptera, Agromyzidae). Proc Entomol Soc Ontario 121:79–84Google Scholar
  11. Bucher GE, Stephens JM (1957) A disease of grasshoppers caused by the bacterium Pseudomonas aeruginosa (Schroeter) Migula. Can J Microbiol 3:611–625.  https://doi.org/10.1139/m57-067 CrossRefPubMedGoogle Scholar
  12. Buck JC, Weinstein SB, Young HS (2018) Ecological and evolutionary consequences of parasite avoidance. Trends Ecol Evol 33:619–632.  https://doi.org/10.1016/j.tree.2018.05.001 CrossRefPubMedGoogle Scholar
  13. Chadwick W, Little TJ (2005) A parasite-mediated life-history shift in Daphnia magna. Proc R Soc Lond B 272:505–509.  https://doi.org/10.1098/rspb.2004.2959 CrossRefGoogle Scholar
  14. Clayton DH (1991) The influence of parasites on host sexual selection. Parasitol Today 7:329–334.  https://doi.org/10.1016/0169-4758(91)90211-6 CrossRefPubMedGoogle Scholar
  15. Clemente SH, Rodrigues LR, Ponce R, Varela SAM, Magalhães S (2016) Incomplete species recognition entails few costs in spider mites, despite first-male precedence. Behav Ecol Sociobiol 70:1161–1170.  https://doi.org/10.1007/s00265-016-2124-0 CrossRefGoogle Scholar
  16. Commare RR et al (2002) Pseudomonas fluorescens based bio-formulation for the management of sheath blight disease and leaffolder insect in rice. Crop Prot 21:671–677.  https://doi.org/10.1016/S0261-2194(02)00020-0 CrossRefGoogle Scholar
  17. Cornet S, Nicot A, Rivero A, Gandon S (2013) Malaria infection increases bird attractiveness to uninfected mosquitoes. Ecol Lett.  https://doi.org/10.1111/ele.12041 CrossRefPubMedGoogle Scholar
  18. Crawley MJ (2007) The R Book. Wiley, ChichesterCrossRefGoogle Scholar
  19. Cremer S, Pull CD, Furst MA (2018) Social immunity: emergence and evolution of colony-level disease protection. Annu Rev Entomol 63:105–123.  https://doi.org/10.1146/annurev-ento-020117-043110 CrossRefPubMedGoogle Scholar
  20. Curtis VA (2014) Infection-avoidance behaviour in humans and other animals. Trends Immunol 35:457–464.  https://doi.org/10.1016/j.it.2014.08.006 CrossRefPubMedGoogle Scholar
  21. Eakin L, Wang M, Dwyer G (2015) The effects of the avoidance of infectious hosts on infection risk in an insect–pathogen interaction. Am Nat 185:100–112.  https://doi.org/10.1086/678989 CrossRefPubMedGoogle Scholar
  22. Fill A, Long EY, Finke DL (2012) Non-consumptive effects of a natural enemy on a non-prey herbivore population. Ecol. Entomol 37:43–50.  https://doi.org/10.1111/j.1365-2311.2011.01333.x CrossRefGoogle Scholar
  23. Fouks B, Lattorff HMG (2011) Recognition and avoidance of contaminated flowers by foraging bumblebees (Bombus terrestris). PLoS One.  https://doi.org/10.1371/journal.pone.0026328 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gerardo NM et al (2010) Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol.  https://doi.org/10.1186/gb-2010-11-2-r21 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Graham AL, Shuker DM, Pollitt LC, Auld SKJR, Wilson AJ, Little TJ (2011) Fitness consequences of immune responses: strengthening the empirical framework for ecoimmunology. Funct Ecol 25:5–17.  https://doi.org/10.1111/j.1365-2435.2010.01777 CrossRefGoogle Scholar
  26. Grbic M et al (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492.  https://doi.org/10.1038/nature10640 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hall MD, Bento G, Ebert D (2017) The evolutionary consequences of stepwise infection processes. Trends Ecol Evol 32:612–623.  https://doi.org/10.1016/j.tree.2017.05.009 CrossRefPubMedGoogle Scholar
  28. Hart BL (1990) Behavioral adaptations to pathogens and parasites—5 strategies. Neurosci Biobehav Rev 14:273–294.  https://doi.org/10.1016/s0149-7634(05)80038-7 CrossRefPubMedGoogle Scholar
  29. Hart BL (1994) Behavioral defense against parasites—interaction with parasite invasiveness. Parasitology 109:S139–S151.  https://doi.org/10.1017/s0031182000085140 CrossRefPubMedGoogle Scholar
  30. Heins DC (2012) Fecundity compensation in the three-spined stickleback Gasterosteus aculeatus infected by the diphyllobothriidean cestode Schistocephalus solidus. Biol J Lin Soc 106:807–819.  https://doi.org/10.1111/j.1095-8312.2012.01907.x CrossRefGoogle Scholar
  31. Janzen DH (1977) Why fruits rot, seeds mold, and meat spoils. Am Nat 111:691–713.  https://doi.org/10.1086/283200 CrossRefGoogle Scholar
  32. Karvonen A, Seppala O, Valtonen ET (2004) Parasite resistance and avoidance behaviour in preventing eye fluke infections in fish. Parasitology 129:159–164.  https://doi.org/10.1017/s0031182004005505 CrossRefPubMedGoogle Scholar
  33. Kiesecker JM, Skelly DK, Beard KH, Preisser E (1999) Behavioral reduction of infection risk. Proc Natl Acad Sci USA 96:9165–9168.  https://doi.org/10.1073/pnas.96.16.9165 CrossRefPubMedGoogle Scholar
  34. Kim DJ, Chung SG, Lee SH, Choi JW (2012) Relation of microbial biomass to counting units for Pseudomonas aeruginosa. Afr J Microbiol Res 6:4620–4622.  https://doi.org/10.5897/ajmr10.902 CrossRefGoogle Scholar
  35. Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B (2011) Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci USA 108:15966–15971.  https://doi.org/10.1073/pnas.1105994108 CrossRefPubMedGoogle Scholar
  36. Laughton AM, Garcia JR, Gerardo NM (2016) Condition-dependent alteration of cellular immunity by secondary symbionts in the pea aphid, Acyrthosiphon pisum. J Insect Physiol 86:17–24.  https://doi.org/10.1016/j.jinsphys.2015.12.005 CrossRefPubMedGoogle Scholar
  37. Lemaitre B, Hoffman J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743.  https://doi.org/10.1146/annurev.immunol.25.022106.141615 CrossRefPubMedGoogle Scholar
  38. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983.  https://doi.org/10.1016/s0092-8674(00)80172-5 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Liu XY, Sun YL, Korner CJ, Du XR, Vollmer ME, Pajerowska-Mukhtar KM (2015) Bacterial leaf infiltration assay for fine characterization of plant defense responses using the Arabidopsis thalianaPseudomonas syringae pathosystem. Jove J Vis Exp.  https://doi.org/10.3791/53364 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Martins NE, Faria VG, Teixeira L, Magalhães S, Sucena E (2013) Host adaptation is contingent upon the infection route taken by pathogens. PLoS Pathog.  https://doi.org/10.1371/journal.ppat.1003601 CrossRefPubMedPubMedCentralGoogle Scholar
  41. McGettigan J, McLennan R, Broderick KE, Kean L, Allan AK, Cabrero P, Regulski M, Pollock VP, Gould GW, Davies SA, Dow JA (2005). Insect renal tubules constitute a cell-autonomous immune system that protects the organism against bacterial infection. Insect Biochem Mol 35(7):741–754.  https://doi.org/10.1016/j.ibmb.2005.02.017 CrossRefGoogle Scholar
  42. Meric G, Kemsley EK, Falush D, Saggers EJ, Lucchini S (2013) Phylogenetic distribution of traits associated with plant colonization in Escherichia coli. Environ Microbiol 15:487–501.  https://doi.org/10.1111/j.1462-2920.2012.02852.x CrossRefPubMedGoogle Scholar
  43. Mnyone LL, Koenraadt CJM, Lyimo IN, Mpingwa MW, Takken W, Russell TL (2010) Anopheline and culicine mosquitoes are not repelled by surfaces treated with the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Parasit Vectors 3:4.  https://doi.org/10.1186/1756-3305-3-80 CrossRefGoogle Scholar
  44. Moore J (2002) Parasites and the behaviour of animals, 1st edn. Oxford University Press, OxfordGoogle Scholar
  45. Ormond EL, Thomas APM, Pell JK, Freeman SN, Roy HE (2011) Avoidance of a generalist entomopathogenic fungus by the ladybird, Coccinella septempunctata. FEMS Microbiol Ecol 77:229–237.  https://doi.org/10.1111/j.1574-6941.2011.01100.x CrossRefPubMedGoogle Scholar
  46. Pallini A, Janssen A, Sabelis MW (1997) Odour-mediated responses of phytophagous mites to conspecific and heterospecific competitors. Oecologia 110:179–185.  https://doi.org/10.1007/s004420050147 CrossRefPubMedGoogle Scholar
  47. Parker BJ, Elderd BD, Dwyer G (2010) Host behaviour and exposure risk in an insect-pathogen interaction. J Anim Ecol 79:863–870.  https://doi.org/10.1111/j.1365-2656.2010.01690.x CrossRefPubMedGoogle Scholar
  48. Parker BJ, Barribeau SM, Laughton AM, de Roode JC, Gerardo NM (2011) Non-immunological defense in an evolutionary framework. Trends Ecol Evol 26:242–248.  https://doi.org/10.1016/j.tree.2011.02.005 CrossRefPubMedGoogle Scholar
  49. Parker BJ, Barribeau SM, Laughton AM, Griffin LH, Gerardo NM (2017) Life-history strategy determines constraints on immune function. J Anim Ecol 86:473–483.  https://doi.org/10.1111/1365-2656.12657 CrossRefPubMedGoogle Scholar
  50. Pigeault R et al (2015) Avian malaria: a new lease of life for an old experimental model to study the evolutionary ecology of Plasmodium. Philos Trans R Soc B Biol Sci.  https://doi.org/10.1098/rstb.2014.0300 CrossRefGoogle Scholar
  51. Poinar G, Poinar R (1998) Parasites and pathogens of mites. Annu Rev Entomol 43:449–469.  https://doi.org/10.1146/annurev.ento.43.1.449 CrossRefPubMedGoogle Scholar
  52. Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JHJ (2012) Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J 6:1812–1822.  https://doi.org/10.1038/ismej.2012.32 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rodrigues LR, Figueiredo ART, Varela SAM, Olivieri I, Magalhães S (2017) Male spider mites use chemical cues, but not the female mating interval, to choose between mates. Exp Appl Acarol 71:1–13.  https://doi.org/10.1007/s10493-016-0103-9 CrossRefPubMedGoogle Scholar
  54. Rondot Y, Reineke A (2017) Association of Beauveria bassiana with grapevine plants deters adult black vine weevils, Otiorhynchus sulcatus. Biocontrol Sci Tech 27:811–820.  https://doi.org/10.1080/09583157.2017.1347604 CrossRefGoogle Scholar
  55. Santos-Matos G et al (2017) Tetranychus urticae mites do not mount an induced immune response against bacteria. Proc R Soc B 284:8.  https://doi.org/10.1098/rspb.2017.0401 CrossRefGoogle Scholar
  56. Schmid-Hempel P (2005) Evolutionary ecology of insect immune defenses. Annu Rev Entomol 50:529–551.  https://doi.org/10.1146/annurev.ento.50.071803.130420 CrossRefPubMedGoogle Scholar
  57. Schneider M, Dorn A (2001) Differential infectivity of two Pseudomonas species and the immune response in the milkweed bug, Oncopeltus fasciatus (Insecta: Hemiptera). J Invertebr Pathol 78:135–140.  https://doi.org/10.1006/jipa.2001.5054 CrossRefPubMedGoogle Scholar
  58. Scholte EJ, Knols BGJ, Takken W (2006) Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J Invertebr Pathol 91:43–49.  https://doi.org/10.1016/j.jip.2005.10.006 CrossRefPubMedGoogle Scholar
  59. Seo S, Matthews KR (2012) Influence of the plant defense response to Escherichia coli O157:H7 Cell surface structures on survival of that enteric pathogen on plant surfaces. Appl Environ Microbiol 78:5882–5889.  https://doi.org/10.1128/aem.01095-12 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Soldano A et al (2016) Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila. Elife.  https://doi.org/10.7554/elife.13133 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Solomon EB, Yaron S, Matthews KR (2002) Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Appl Environ Microbiol 68:397–400.  https://doi.org/10.1128/aem.68.1.397-400.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Solomon EB, Pang HJ, Matthews KR (2003) Persistence of Escherichia coli O157:H7 on lettuce plants following spray irrigation with contaminated water. J Food Prot 66:2198–2202.  https://doi.org/10.4315/0362-028x-66.12.2198 CrossRefPubMedGoogle Scholar
  63. Tasin M, Knudsen GK, Pertot I (2012) Smelling a diseased host: grapevine moth responses to healthy and fungus-infected grapes. Anim Behav 83:555–562.  https://doi.org/10.1016/j.anbehav.2011.12.003 CrossRefGoogle Scholar
  64. Thomas GM, Poinar GO (1973) Report od diagnoses of diseased insects 1962–1972. Hilgardia 42:261–359.  https://doi.org/10.3733/hilg.v42n08p261 CrossRefGoogle Scholar
  65. Vézilier J, Nicot A, Gandon S, Rivero A (2015) Plasmodium infection brings forward mosquito oviposition. Biol Lett.  https://doi.org/10.1098/rsbl.2014.0840 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Vodovar N et al (2005) Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci USA 102:11414–11419.  https://doi.org/10.1073/pnas.0502240102 CrossRefPubMedGoogle Scholar
  67. Vodovar N et al (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24:673–679.  https://doi.org/10.1038/nbt1212 CrossRefPubMedGoogle Scholar
  68. Zélé F, Denoyelle J, Duron O, Rivero A (2018) Can Wolbachia modulate the fecundity costs of Plasmodium in mosquitoes? Parasitology 145:775–782.  https://doi.org/10.1017/s0031182017001330 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de LisboaLisbonPortugal
  2. 2.Instituto Gulbenkian de CiênciaOeirasPortugal
  3. 3.Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
  4. 4.Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
  5. 5.Zoological InstituteUniversity of BaselBaselSwitzerland
  6. 6.Departamento de Biologia Animal, Faculdade de Ciências da Universidade de LisboaLisbonPortugal

Personalised recommendations