, Volume 189, Issue 1, pp 185–197 | Cite as

Understanding negative biodiversity–ecosystem functioning relationship in semi-natural wildflower strips

  • Nadine SandauEmail author
  • Russell E. Naisbit
  • Yvonne Fabian
  • Odile T. Bruggisser
  • Patrik Kehrli
  • Alexandre Aebi
  • Rudolf P. Rohr
  • Louis-Félix Bersier
Community ecology – original research


Studies on biodiversity–ecosystem functioning (BEF) in highly controlled experiments often yield results incompatible with observations from natural systems: experimental results often reveal positive relationships between diversity and productivity, while for natural systems, zero or even negative relationships have been reported. The discrepancy may arise due to a limited or closed local species pool in experiments, while natural systems in meta-community contexts experience dynamic processes, i.e., colonization and extinctions. In our study, we analysed plant community properties and above-ground biomass within a semi-natural (i.e., not weeded) experiment in an agricultural landscape. Eleven replicates with four different diversity levels were created from a species pool of 20 wildflower species. We found an overall significant negative relationship between total diversity and productivity. This relationship likely resulted from invasion resistance: in plots sown with low species numbers, we observed colonization by low-performing species; colonization increased species richness but did not contribute substantially to productivity. Interestingly, when analysing the biomass of the sown and the colonizer species separately, we observed in both cases positive BEF relationships, while this relationship was negative for the whole system. A structural equation modelling approach revealed that higher biomass of the sown species was linked to higher species richness, while the positive BEF relationship of the colonizers was indirect and constrained by the sown species biomass. Our results suggest that, in semi-natural conditions common in extensive agroecosystems, the negative BEF relationship results from the interplay between local dominant species and colonization from the regional species pool by subordinate species.


BEF Colonization Invasibility Phylogenetic diversity Species richness 



We thank Jan Lepš, Loïc Pellissier and Sarah M. Gray for helpful suggestions on an earlier version of the manuscript, and Sven Bacher for help with model averaging. We are grateful for the participation of Jacques Studer and of the farmers from Grandcour and all the valuable help provided by friends and family members.

Author contribution statement

NS, PK and LFB planned the experiment, NS, AA, YF and OTB conducted the experiment, NS, RPR and LFB conducted the analyses; NS, REN and LFB wrote the article.


This study was supported by the Swiss National Science Foundation (Grant 31003A_138489 to LFB).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Data accessibility

Data will be available in Dryad.

Supplementary material

442_2018_4305_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1029 kb)


  1. Assaf TA, Beyschlag W, Isselstein J (2011) The relationship between plant diversity and productivity in natural and in managed grasslands. Appl Ecol Environ Res 9:157–166. CrossRefGoogle Scholar
  2. Bartón K (2015) MuMIn: multi-model inference. R package version 1.9.13. 1:18Google Scholar
  3. Bracken MES, Williams SL (2017) The underappreciated role of life history in mediating the functional consequences of biodiversity change. Oikos 126:488–496. CrossRefGoogle Scholar
  4. Bruggisser OT, Sandau N, Blandenier G, Fabian Y, Kehrli P, Aebi A, Naisbit RE, Bersier L-F (2012) Direct and indirect bottom-up and top-down forces shape the abundance of the orb-web spider Argiope bruennichi. Basic Appl Ecol 13:706–714. CrossRefGoogle Scholar
  5. Cadotte MW, Cardinale BJ, Oakley TH (2008) Evolutionary history and the effect of biodiversity on plant productivity. Proc Natl Acad Sci USA 105:17012–17017. CrossRefPubMedGoogle Scholar
  6. Cadotte MW, Hamilton MA, Murray BR (2009) Phylogenetic relatedness and plant invader success across two spatial scales. Divers Distrib 15:481–488. CrossRefGoogle Scholar
  7. Cardinale BJ, Nelson K, Palmer MA (2000) Linking species diversity to the functioning of ecosystems: on the importance of environmental context. Oikos 91:175–183. CrossRefGoogle Scholar
  8. Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992. CrossRefPubMedGoogle Scholar
  9. Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci 104:18123–18128. CrossRefPubMedGoogle Scholar
  10. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715. CrossRefPubMedGoogle Scholar
  11. Chapin FS III, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, Tilman D (1997) Biotic control over the functioning of ecosystems. Science 277:500–504. CrossRefGoogle Scholar
  12. Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689. CrossRefPubMedGoogle Scholar
  13. Fabian Y, Sandau N, Bruggisser OT, Kehrli P, Aebi A, Rohr RP, Naisbit RE, Bersier L-F (2012) Diversity protects plant communities against generalist molluscan herbivores. Ecol Evol 2:2460–2473. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fabian Y, Sandau N, Bruggisser OT, Aebi A, Kehrli P, Rohr RP, Naisbit RE, Bersier L-F (2013) The importance of landscape and spatial structure for hymenopteran-based food webs in an agro-ecosystem. J Anim Ecol 82:1203–1214. CrossRefPubMedGoogle Scholar
  15. Fabian Y, Sandau N, Bruggisser OT, Aebi A, Kehrli P, Rohr RP, Naisbit RE, Bersier L-F (2014) Plant diversity in a nutshell: testing for small-scale effects on trap nesting wild bees and wasps. Ecosphere 5:art18. CrossRefGoogle Scholar
  16. Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand OaksGoogle Scholar
  17. Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008) Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol 23:695–703. CrossRefPubMedGoogle Scholar
  18. Grace JB, Anderson TM, Smith MD, Seabloom E, Andelman SJ, Meche G, Weiher E, Allain LK, Jutila H, Sankaran M, Knops J, Ritchie M, Willig MR (2007) Does species diversity limit productivity in natural grassland communities? Ecol Lett 10:680–689. CrossRefPubMedGoogle Scholar
  19. Günter M (2000) Establishment and care of perennial wildflower strips under specific conditions for arable farming in the Swiss midlands. Agrarökologie 37:1–154Google Scholar
  20. Haaland C, Naisbit RE, Bersier L-F (2011) Sown wildflower strips for insect conservation: a review. Insect Conserv Divers 4:60–80. CrossRefGoogle Scholar
  21. Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638. CrossRefPubMedGoogle Scholar
  22. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze E-D, Siamantziouras A-SD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127. CrossRefPubMedGoogle Scholar
  23. Hector A, Dobson K, Minns A, Bazeley-White E, Lawton JH (2001) Community diversity and invasion resistance: an experimental test in a grassland ecosystem and a review of comparable studies. Ecol Res 16:819–831. CrossRefGoogle Scholar
  24. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432. CrossRefGoogle Scholar
  25. Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108. CrossRefPubMedGoogle Scholar
  26. Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460. CrossRefPubMedGoogle Scholar
  27. Jain M, Flynn DFB, Prager CM, Hart GM, DeVan CM, Ahrestani FS, Palmer MI, Bunker DE, Knops JMH, Jouseau CF, Naeem S (2014) The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecol Evol 4:104–112. CrossRefPubMedGoogle Scholar
  28. Jørgensen SE (2004) Model selection and multimodel inference. Ecol Modell 172:96–97. CrossRefGoogle Scholar
  29. Kahmen A, Perner J, Audorff V, Weisser W, Buchmann N (2005) Effects of plant diversity, community composition and environmental parameters on productivity in montane European grasslands. Oecologia 142:601–615. CrossRefGoogle Scholar
  30. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: r tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. CrossRefPubMedGoogle Scholar
  31. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, Van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274. CrossRefGoogle Scholar
  32. Lefcheck JS (2016) piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579. CrossRefGoogle Scholar
  33. Legendre P, Legendre L (1998) Numerical ecology, 2 english edn. Elsevier, AmsterdamGoogle Scholar
  34. Lepš J (2004) What do the biodiversity experiments tell us about consequences of plant species loss in the real world? Basic Appl Ecol 5:529–534. CrossRefGoogle Scholar
  35. Lepŝ J, Doleẑal J, Bezemer TM, Brown VK, Hedlund K, Arroyo MI, Bracht Jörgensen H, Lawson CS, Mortimer SR, Peix Geldart A, Rodríguez Barrueco C, Santa Regina I, Ŝmilauer P, van der Putten WH (2007) Long-term effectiveness of sowing high and low diversity seed mixtures to enhance plant community development on ex-arable fields. Appl Veg Sci 10:97–110. CrossRefGoogle Scholar
  36. Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15. CrossRefGoogle Scholar
  37. Loreau M (1998) Biodiversity and ecosystem functioning: a mechanistic model. Proc Natl Acad Sci USA 95:5632–5636. CrossRefPubMedGoogle Scholar
  38. Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76. CrossRefPubMedGoogle Scholar
  39. Loreau M, Mouquet N (1999) Immigration and the maintenance of local species diversity. Am Nat 154:427–440. CrossRefPubMedGoogle Scholar
  40. Milbau A, Nijs I, De Raedemaecker F, Reheul D, De Cauwer B (2005) Invasion in grassland gaps: the role of neighbourhood richness, light availability and species complementarity during two successive years. Funct Ecol 19:27–37. CrossRefGoogle Scholar
  41. Minchin PRR (1987) An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89–107. CrossRefGoogle Scholar
  42. Mouquet N, Moore JL, Loreau M (2002) Plant species richness and community productivity: why the mechanism that promotes coexistence matters. Ecol Lett 5:56–65. CrossRefGoogle Scholar
  43. Narwani A, Matthews B, Fox JW, Venail PA (2015) Using phylogenetics in community assembly and ecosystem functioning research. Funct Ecol 29:589–591. CrossRefGoogle Scholar
  44. Nentwig W (2000) Streifenförmige ökologische Ausgleichsflächen in der Kulturlandschaft: Ackerkrautstreifen, Buntbrachem, Feldränder. vaö - Verlag Agrarökologie, Bern, HannoverGoogle Scholar
  45. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner HH (2015) Vegan: community ecology package. R packag. version 2.2-1Google Scholar
  46. Parain E, Rohr RP, Gray SM, Bersier L-F (2019) Global warming disrupts biodiversity-ecosystem functioning relationships. Am Nat (in press) Google Scholar
  47. Pärtel M, Szava-Kovats RC, Zobel M (2011) Dark diversity: shedding light on absent species. Trends Ecol Evol 26:124–128. CrossRefPubMedGoogle Scholar
  48. Petchey OL (2004) On the statistical significance of functional diversity effects. Funct Ecol 18:297–303. CrossRefGoogle Scholar
  49. Petermann JS, Fergus AJF, Roscher C, Turnbull LA, Weigelt A, Schmid B (2010) Biology, chance, or history? The predictable reassembly of temperate grassland communities. Ecology 91:408–421. CrossRefPubMedGoogle Scholar
  50. Pfisterer AB, Joshi J, Schmid B, Fischer M (2004) Rapid decay of diversity-productivity relationships after invasion of experimental plant communities. Basic Appl Ecol 5:5–14. CrossRefGoogle Scholar
  51. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2013) nlme: linear and nonlinear mixed effects models. R package version 1–86Google Scholar
  52. R Core Team (2015). R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria.
  53. Richards SA (2005) Testing ecological theory using the information-theoretic approach: examples and cautionary results. Ecology 86:2805–2814. CrossRefGoogle Scholar
  54. Richards SA (2008) Dealing with overdispersed count data in applied ecology. J Appl Ecol 45:218–227. CrossRefGoogle Scholar
  55. Rohr RP, Saavedra S, Peralta G, Frost CM, Bersier L-F, Bascompte J, Tylianakis JM (2016) Persist or produce: a community trade-off tuned by species evenness. Am Nat 188:411–422. CrossRefPubMedGoogle Scholar
  56. Rösch V, Tscharntke T, Scherber C, Batáry P (2015) Biodiversity conservation across taxa and landscapes requires many small as well as single large habitat fragments. Oecologia 179:209–222. CrossRefPubMedGoogle Scholar
  57. Roscher C, Schumacher J, Baade J (2004) The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl Ecol 5:107–121. CrossRefGoogle Scholar
  58. Roscher C, Temperton VM, Scherer-Lorenzen M et al (2005) Overyielding in experimental grassland communities—irrespective of species pool or spatial scale. Ecol Lett 8:419–429. CrossRefGoogle Scholar
  59. Roscher C, Temperton VM, Buchmann N, Schulze E-D (2009) Community assembly and biomass production in regularly and never weeded experimental grasslands. Acta Oecol 35:206–217. CrossRefGoogle Scholar
  60. Roscher C, Fergus AJF, Petermann JS, Buchmann N, Schmid B, Schulze E-D (2013) What happens to the sown species if a biodiversity experiment is not weeded? Basic Appl Ecol 14:187–198. CrossRefGoogle Scholar
  61. Rose L, Leuschner C (2012) The diversity–productivity relationship in a permanent temperate grassland: negative diversity effect, dominant influence of management regime. Plant Ecol Divers 874:1–10. CrossRefGoogle Scholar
  62. Rychtecká T, Lanta V, Weiterová I, Lepš J (2014) Sown species richness and realized diversity can influence functioning of plant communities differently. Naturwissenschaften 101:637–644. CrossRefPubMedGoogle Scholar
  63. Sandau N, Rohr RP, Naisbit RE, Fabian Y, Bruggisser OT, Kehrli P, Aebi A, Bersier L-F (2014) Including community composition in biodiversity-productivity models. Methods Ecol Evol 5:815–823. CrossRefGoogle Scholar
  64. Thompson K, Askew AP, Grime JP, Dunnett NP, Willis AJ (2005) Biodiversity, ecosystem function and plant traits in mature and immature plant communities. Funct Ecol 19:355–358. CrossRefGoogle Scholar
  65. Tilman DG (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845. CrossRefPubMedGoogle Scholar
  66. Tilman DG, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720. CrossRefGoogle Scholar
  67. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685. CrossRefPubMedGoogle Scholar
  68. Van Ruijven J, Berendse F (2003) Positive effects of plant species diversity on productivity in the absence of legumes. Ecol Lett 6:170–175. CrossRefGoogle Scholar
  69. Venail PA, Gross K, Oakley TH, Narwani A, Allan E, Flombaum P, Isbell F, Joshi J, Reich PB, Tilman D, van Ruijven J, Cardinale BJ (2015) Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Funct Ecol 29:615–626. CrossRefGoogle Scholar
  70. Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–183. CrossRefGoogle Scholar
  71. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biology, Ecology and EvolutionUniversity of FribourgFribourgSwitzerland
  2. 2.AgroscopeZurichSwitzerland
  3. 3.Department of Civil, Environmental and Geomatic Engineering, Groundwater and HydromechanicsETH ZurichZurichSwitzerland
  4. 4.Station de recherche Agroscope Changins-Wädenswil ACWNyonSwitzerland
  5. 5.Laboratory of Soil BiologyUniversity of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations