, Volume 188, Issue 1, pp 319–330 | Cite as

Beyond the swab: ecosystem sampling to understand the persistence of an amphibian pathogen

  • Brittany A. MosherEmail author
  • Kathryn P. Huyvaert
  • Larissa L. Bailey
Conservation ecology – original research


Understanding the ecosystem-level persistence of pathogens is essential for predicting and measuring host–pathogen dynamics. However, this process is often masked, in part due to a reliance on host-based pathogen detection methods. The amphibian pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal) are pathogens of global conservation concern. Despite having free-living life stages, little is known about the distribution and persistence of these pathogens outside of their amphibian hosts. We combine historic amphibian monitoring data with contemporary host- and environment-based pathogen detection data to obtain estimates of Bd occurrence independent of amphibian host distributions. We also evaluate differences in filter- and swab-based detection probability and assess inferential differences arising from using different decision criteria used to classify samples as positive or negative. Water filtration-based detection probabilities were lower than those from swabs but were > 10%, and swab-based detection probabilities varied seasonally, declining in the early fall. The decision criterion used to classify samples as positive or negative was important; using a more liberal criterion yielded higher estimates of Bd occurrence than when a conservative criterion was used. Different covariates were important when using the liberal or conservative criterion in modeling Bd detection. We found evidence of long-term Bd persistence for several years after an amphibian host species of conservation concern, the boreal toad (Anaxyrus boreas boreas), was last detected. Our work provides evidence of long-term Bd persistence in the ecosystem, and underscores the importance of environmental samples for understanding and mitigating disease-related threats to amphibian biodiversity.


Amphibian decline Anaxyrus boreas boreas Chytridiomycosis Disease ecology Pathogen persistence 



We thank the members of The Boreal Toad Recovery Team for their support of this project and for their assistance with environmental and swab sample collection. We thank K. Davenport, The Bailey Lab, The Huyvaert Lab, The Grant Lab, W. C. Funk (Colorado State University), E. Muths (USGS), L. Belden, and one anonymous reviewer for providing valuable comments on earlier drafts of this manuscript. This is contribution number 650 of the USGS Amphibian Research and Monitoring Initiative (ARMI).

Author contribution statement

BAM, KPH, and LLB conceived of the study, BAM conducted the statistical analyses, and BAM, KPH, and LLB wrote the manuscript.

Supplementary material

442_2018_4167_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 37 kb)


  1. Almberg ES, Cross PC, Johnson CJ, Heisey DM, Richards BJ (2011) Modeling routes of chronic wasting disease transmission: environmental prion persistence promotes deer population decline and extinction. PLoS One 6:e19896. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arnold TW (2010) Uninformative parameters and model selection using Akaike’s Information Criterion. J Wildl Manag 74:1175–1178. CrossRefGoogle Scholar
  3. Berger L, Hyatt AD, Speare R, Longcore JE (2005) Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Dis Aquat Organ 68:51–63. CrossRefPubMedGoogle Scholar
  4. Bletz MC, Rebollar EA, Harris RN (2015) Differential efficiency among DNA extraction methods influences detection of the amphibian pathogen Batrachochytrium dendrobatidis. Dis Aquat Organ 113:1–8. CrossRefPubMedGoogle Scholar
  5. Blooi M, Pasmans F, Longcore JE, der Sluijs AS, Vercammen F, Martel A (2013) Duplex real-time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in amphibian samples. J Clin Microbiol 51:4173–4177. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boreal Toad Recovery Team, Loeffler (ed) (2001) Conservation plan and agreement for the management and recovery of the southern Rocky Mountain population of the boreal toad Bufo boreas boreas. Boreal Toad Recovery TeamGoogle Scholar
  7. Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Organ 60:141–148. CrossRefPubMedGoogle Scholar
  8. Breban R, Drake JM, Stallknecht DE, Rohani P (2009) The role of environmental transmission in recurrent avian influenza epidemics. PLoS Comput Biol 5:e1000346. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Briggs CJ, Knapp RA, Vredenburg VT (2010) Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proc Natl Acad Sci 107:9695–9700. CrossRefPubMedGoogle Scholar
  10. Broza M, Halpern M (2001) Pathogen reservoirs: Chironomid egg masses and Vibrio cholerae. Nature 412:40. CrossRefPubMedGoogle Scholar
  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  12. Carey C (1993) Hypothesis concerning the causes of the disappearance of boreal toads from the mountains of Colorado. Conserv Biol 7:355–362CrossRefGoogle Scholar
  13. Carey C, Bruzgul JE, Livo LJ, Walling ML, Kuehl KA, Dixon BF, Pessier AP, Alford RA, Rogers KB (2006) Experimental exposures of boreal toads (Bufo boreas) to a pathenogenic chytrid fungus (Batrachochytrium dendrobatidis). EcoHealth 3:5–21. CrossRefGoogle Scholar
  14. Carver S, Marm Kilpatrick A, Kuenzi A, Douglass R, Ostfeld RS, Weinstein P (2010) Environmental monitoring to enhance comprehension and control of infectious diseases. J Environ Monit 12:2048–2055. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chestnut T, Anderson C, Popa R, Blaustein AR, Voytek M, Olson DH, Kirshtein J (2014) Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America. PLoS One 9:e106790. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science 287:443–449. CrossRefPubMedGoogle Scholar
  17. Dejean T, Valentini A, Duparc A, Pellier-Cuit S, Pompanon F, Taberlet P, Miaud C (2011) Persistence of environmental DNA in freshwater ecosystems. PLoS One 6:e23398. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Di Rosa I, Simoncelli F, Fagotti A, Pascolini R (2007) Ecology: the proximate cause of frog declines? Nature 447:E4–E5. CrossRefPubMedGoogle Scholar
  19. Dillon MJ, Bowkett AE, Bungard MJ, Beckman KM, O’Brien MF, Bates K, Fisher MC, Stevens JR, Thornton CR (2017) Tracking the amphibian pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans using a highly specific monoclonal antibody and lateral-flow technology. Microb Biotechnol 10:381–394. CrossRefPubMedGoogle Scholar
  20. Dobson A (2004) Population dynamics of pathogens with multiple host species. Am Nat 164:S64–S78. CrossRefPubMedGoogle Scholar
  21. Doherty PF, Nichols JD, Tautin J, Voelzer JF, Smith GW, Benning DS, Bentley VR, Bidwell JK, Bollinger KS, Brazda AR, Buelna EK, Goldsberry JR, King RJ, Roetker FH, Solberg JW, Thorpe PP, Wortham JS (2002) Sources of variation in breeding-ground fidelity of mallards (Anas platyrhynchos). Behav Ecol 13:543–550. CrossRefGoogle Scholar
  22. Dugger KM, Forsman ED, Franklin AB, Davis RJ, White GC, Schwarz CJ, Burnham KP, Nichols JD, Hines JE, Yackulic CB, Doherty PF, Bailey L, Clark DA, Ackers SH, Andrews LS, Augustine B, Biswell BL, Blakesley J, Carlson PC, Clement MJ, Diller LV, Glenn EM, Green A, Gremel SA, Herter DR, Higley JM, Hobson J, Horn RB, Huyvaert KP, McCafferty C, McDonald T, McDonnell K, Olson GS, Reid JA, Rockweit J, Ruiz V, Saenz J, Sovern SG (2016) The effects of habitat, climate, and Barred Owls on long-term demography of Northern Spotted Owls. Condor 118:57–116. CrossRefGoogle Scholar
  23. Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ficetola GF, Pansu J, Bonin A, Coissac E, Giguet-Covex C, De Barba M, Gielly L, Lopes CM, Boyer F, Pompanon F, Rayé G, Taberlet P (2015) Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol Ecol Resour 15:543–556. CrossRefPubMedGoogle Scholar
  25. Fisher MC (2017) Ecology: in peril from a perfect pathogen. Nature 544:300–301. CrossRefPubMedGoogle Scholar
  26. Fisher MC, Garner TW, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310. CrossRefPubMedGoogle Scholar
  27. Garmyn A, Van Rooij P, Pasmans F, Hellebuyck T, Van Den Broeck W, Haesebrouck F, Martel A (2012) Waterfowl: potential environmental reservoirs of the chytrid fungus Batrachochytrium dendrobatidis. PLoS One 7:e35038. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Garner TW, Schmidt BR, Martel A, Pasmans F, Muths E, Cunningham AA, Weldon C, Fisher MC, Bosch J (2016) Mitigating amphibian chytridiomycoses in nature. Philos Trans R Soc Lond B Biol Sci 371:20160207. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gerber BD, Converse SJ, Muths E, Bailey LL, Mosher BA (2018) Identifying species conservation strategies to reduce disease-associated declines. Conserv Lett 11:1–10. CrossRefGoogle Scholar
  30. Godfray HCJ, Briggs CJ, Barlow ND, O’Callaghan M, Glare TR, Jackson TA (1999) A model of insect—pathogen dynamics in which a pathogenic bacterium can also reproduce saprophytically. Proc R Soc Lond B Biol Sci 266:233–240. CrossRefGoogle Scholar
  31. Goldberg CS, Turner CR, Deiner K, Klymus KE, Thomsen PF, Murphy MA, Spear SF, McKee A, Oyler-McCance SJ, Cornman RS et al (2016) Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol Evol 7:1299–1307. CrossRefGoogle Scholar
  32. Gomez-Diaz E, Doherty PF, Duneau D, McCoy KD (2010) Cryptic vector divergence masks vector-specific patterns of infection: an example from the marine cycle of Lyme borreliosis. Evol Appl 3:391–401. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Grant EHC, Muths E, Katz RA, Canessa S, Adams MJ, Ballard JR, Berger L, Briggs CJ, Coleman JT, Gray MJ, Harris MC, Harris RN, Hossack B, Huyvaert KP, Kolby J, Lips KR, Lovich RE, McCallum HI, Mendelson JR, Nanjappa P, Olson DH, Powers JG, Richgels KL, Russell RE, Schmidt BR, Spitzen-van der Sluijs A, Watry MK, Woodhams DC, White CL (2017) Using decision analysis to support proactive management of emerging infectious wildlife diseases. Front Ecol Environ 15:214–221. CrossRefGoogle Scholar
  34. Hammerson GA (1999) Amphibians and reptiles in Colorado, 2nd edn. University Press of Colorado, Colorado Division of Wildlife, NiwotGoogle Scholar
  35. Hammerson GA, Langlois D (1981) Colorado reptile and amphibian distribution latilong study. Colorado Division of Wildlife, DenverGoogle Scholar
  36. Hossack BR, Corn PS (2007) Responses of pond-breeding amphibians to wildfire: short-term patterns in occupancy and colonization. Ecol Appl 17:1403–1410. CrossRefPubMedGoogle Scholar
  37. Hoyt JR, Langwig KE, Sun K, Lu G, Parise KL, Jiang T, Frick WF, Foster JT, Feng J, Kilpatrick AM (2016) Host persistence or extinction from emerging infectious disease: insights from white-nose syndrome in endemic and invading regions. Proc R Soc Lond B Biol Sci 283:20152861. CrossRefGoogle Scholar
  38. Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, Obendorf D, Dalton A, Kriger K, Hero M, Hines H (2007) Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis Aquat Organ 73:175–192. CrossRefPubMedGoogle Scholar
  39. Hyman OJ, Collins JP (2012) Evaluation of a filtration-based method for detecting Batrachochytrium dendrobatidis in natural bodies of water. Dis Aquat Organ 97:185–195. CrossRefPubMedGoogle Scholar
  40. Johnson ML, Speare R (2003) Survival of Batracochytrium dendrobatidis in water: quarantine and disease control implications. Emerg Infect Dis 9:922–925. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Johnson ML, Speare R et al (2005) Possible modes of dissemination of the amphibian chytrid Batrachochytrium dendrobatidis in the environment. Dis Aquat Organ 65:181–186. CrossRefPubMedGoogle Scholar
  42. Kerby JL, Schieffer A, Brown JR, Whitfield S (2012) Utilization of fast qPCR techniques to detect the amphibian chytrid fungus: a cheaper and more efficient alternative method. Methods Ecol Evol 1:5. CrossRefGoogle Scholar
  43. Kirshtein JD, Anderson CW, Wood JS, Longcore JE, Voytek MA (2007) Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water. Dis Aquat Organ 77:11–15. CrossRefPubMedGoogle Scholar
  44. Kriger KM, Hero J-M (2007) Large-scale seasonal variation in the prevalence and severity of chytridiomycosis. J Zool 271:352–359. CrossRefGoogle Scholar
  45. Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118. CrossRefGoogle Scholar
  46. Liew N, Moya MJM, Wierzbicki CJ, Hollinshead M, Dillon MJ, Thornton CR, Ellison A, Cable J, Fisher MC, Mostowy S (2017) Chytrid fungus infection in zebrafish demonstrates that the pathogen can parasitize non-amphibian vertebrate hosts. Nat Commun 8:15048. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Livo LJ (2004) Methods for obtaining Batrachochytrium dendrobatidis (Bd) samples for PCR testing. Colo Div Wildl Boreal Toad Res Rep 2003:64–68Google Scholar
  48. Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227. CrossRefGoogle Scholar
  49. Lorch JM, Muller LK, Russell RE, O’Connor M, Lindner DL, Blehert DS (2013) Distribution and environmental persistence of the causative agent of white-nose syndrome, Geomyces destructans, in bat hibernacula of the eastern United States. Appl Environ Microbiol 79:1293–1301. CrossRefPubMedPubMedCentralGoogle Scholar
  50. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Andrew Royle J, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255CrossRefGoogle Scholar
  51. Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Fisher MC, Woeltjes A, Bosman W, Chiers K, Bossuyt F, Pasmans F (2013) Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci 110:15325–15329. CrossRefPubMedGoogle Scholar
  52. McClintock BT, Nichols JD, Bailey LL, MacKenzie DI, Kendall WL, Franklin AB (2010) Seeking a second opinion: uncertainty in disease ecology. Ecol Lett 13:659–674. CrossRefPubMedGoogle Scholar
  53. McKee AM, Spear SF, Pierson TW (2015) The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples. Biol Conserv 183:70–76. CrossRefGoogle Scholar
  54. McMahon TA, Brannelly LA, Chatfield MW, Johnson PT, Joseph MB, McKenzie VJ, Richards-Zawacki CL, Venesky MD, Rohr JR (2013) Chytrid fungus Batrachochytrium dendrobatidis has nonamphibian hosts and releases chemicals that cause pathology in the absence of infection. Proc Natl Acad Sci 110:210–215. CrossRefPubMedGoogle Scholar
  55. Miller DAW, Talley BL, Lips KR, Campbell Grant EH (2012) Estimating patterns and drivers of infection prevalence and intensity when detection is imperfect and sampling error occurs. Methods Ecol Evol 3:850–859. CrossRefGoogle Scholar
  56. Minakawa N, Sonye G, Mogi M, Githeko A, Yan G (2002) The effects of climatic factors on the distribution and abundance of malaria vectors in Kenya. J Med Entomol 39:833–841. CrossRefPubMedGoogle Scholar
  57. Mitchell KM, Churcher TS, Garner TWJ, Fisher MC (2008) Persistence of the emerging pathogen Batrachochytrium dendrobatidis outside the amphibian host greatly increases the probability of host extinction. Proc R Soc Lond B Biol Sci 275:329–334. CrossRefGoogle Scholar
  58. Mosher BA, Huyvaert KP, Chestnut T, Kerby JL, Madison JD, Bailey LL (2017) Design- and model-based strategies for detecting and quantifying an amphibian pathogen in environmental samples. Ecol Evol 7:10952–10962. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mosher BA, Bailey LL, Hubbard BA, Huyvaert KP (2018a) Inferential biases linked to unobservable states in complex occupancy models. Ecography 41:32–39. CrossRefGoogle Scholar
  60. Mosher BA, Bailey LL, Muths E, Huyvaert KP (2018b) Host-pathogen metapopulation dynamics suggest high elevation refugia for boreal toads. Ecol Appl. PubMedCrossRefGoogle Scholar
  61. Moyer GR, Díaz-Ferguson E, Hill JE, Shea C (2014) Assessing environmental DNA detection in controlled lentic systems. PLoS One 9:e103767. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Muths E, Stephen Corn P, Pessier AP, Earl Green D (2003) Evidence for disease-related amphibian decline in Colorado. Biol Conserv 110:357–365. CrossRefGoogle Scholar
  63. Muths E, Pilliod DS, Livo LJ (2008) Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA. Biol Conserv 141:1484–1492. CrossRefGoogle Scholar
  64. Muths E, Bailey LL, Watry MK (2014) Animal reintroductions: an innovative assessment of survival. Biol Conserv 172:200–208. CrossRefGoogle Scholar
  65. Navidi W, Arnheim N, Waterman MS (1992) A multiple-tubes approach for accurate genotyping of very small DNA samples by using PCR: statistical considerations. Am J Hum Genet 50:347PubMedPubMedCentralGoogle Scholar
  66. Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF, Bielby J, Garner TWJ, Weaver G, Fisher MC, The Bd Mapping Group (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One 8:e56802. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Petersen CE, Lovich RE, Phillips CA, Dreslik MJ, Lannoo MJ (2016) Prevalence and seasonality of the amphibian chytrid fungus Batrachochytrium dendrobatidis along widely separated longitudes across the United States. EcoHealth 13:368–382. CrossRefPubMedGoogle Scholar
  68. Pilliod DS, Muths E, Scherer RD, Bartelt PE, Corn PS, Hossack BR, Lambert BA, McCaffery R, Gaughan C (2010) Effects of amphibian chyrid fungus on individual survival probability in wild boreal toads. Conserv Biol 24:1259–1267. CrossRefPubMedGoogle Scholar
  69. Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15. CrossRefPubMedGoogle Scholar
  70. Reeder NM, Pessier AP, Vredenburg VT (2012) A reservoir species for the emerging amphibian pathogen Batrachochytrium dendrobatidis thrives in a landscape decimated by disease. PLoS One 7:e33567. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Richgels KL, Russell RE, Adams MJ, White CL, Grant EHC (2016) Spatial variation in risk and consequence of Batrachochytrium salamandrivorans introduction in the USA. R Soc Open Sci 3:150616. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rogers DJ, Randolph SE (2000) The global spread of malaria in a future, warmer world. Science 289:1763–1766. CrossRefPubMedGoogle Scholar
  73. Royle JA, Nichols JD (2003) Estimating abundance from repeated presence-absence data or point counts. Ecology 84:777–790CrossRefGoogle Scholar
  74. Scheele BC, Hunter DA, Brannelly LA, Skerratt LF, Driscoll DA (2017) Reservoir-host amplification of disease impact in an endangered amphibian. Conserv Biol 31:592–600. CrossRefPubMedGoogle Scholar
  75. Schmidt BR, Kéry M, Ursenbacher S, Hyman OJ, Collins JP (2013) Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. Methods Ecol Evol 4:646–653. CrossRefGoogle Scholar
  76. Shapard EJ, Moss AS, Francisco MJS (2012) Batrachochytrium dendrobatidis can infect and cause mortality in the nematode Caenorhabditis elegans. Mycopathologia 173:121–126. CrossRefPubMedGoogle Scholar
  77. Sharp A, Pastor J (2011) Stable limit cycles and the paradox of enrichment in a model of chronic wasting disease. Ecol Appl 21:1024–1030. CrossRefPubMedGoogle Scholar
  78. Shin J, Bataille A, Kosch TA, Waldman B (2014) Swabbing often fails to detect amphibian chytridiomycosis under conditions of low infection load. PLoS One 9:e111091. CrossRefPubMedPubMedCentralGoogle Scholar
  79. Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–134. CrossRefGoogle Scholar
  80. Spitzen-van der Sluijs A, Spikmans F, Bosman W, de Zeeuw M, van der Meij T, Goverse E, Kik M, Pasmans F, Martel A (2013) Rapid enigmatic decline drives the fire salamander (Salamandra salamandra) to the edge of extinction in the Netherlands. Amphib-Reptil 34:233–239. CrossRefGoogle Scholar
  81. Stegen G, Pasmans F, Schmidt BR, Rouffaer LO, Van Praet S, Schaub M, Canessa S, Laudelout A, Kinet T, Adriaensen C, Haesebrouck F, Bert W, Bossuyt F, Martel A (2017) Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature 544:353–356. CrossRefPubMedGoogle Scholar
  82. Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP, Orlando L, Willerslev E (2012) Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21:2565–2573. CrossRefPubMedGoogle Scholar
  83. Venesky MD, Liu X, Sauer EL, Rohr JR (2014) Linking manipulative experiments to field data to test the dilution effect. J Anim Ecol 83:557–565. CrossRefPubMedGoogle Scholar
  84. Walker SF, Baldi Salas M, Jenkins D, Garner TWJ, Cunningham AA, Hyatt AD, Bosch J, Fisher MC (2007) Environmental detection of Batrachochytrium dendrobatidis in a temperate climate. Dis Aquat Organ 77:105. CrossRefPubMedGoogle Scholar
  85. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S139CrossRefGoogle Scholar
  86. Woodhams DC, Ardipradja K, Alford RA, Marantelli G, Reinert LK, Rollins-Smith LA (2007) Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Anim Conserv 10:409–417. CrossRefGoogle Scholar
  87. Woodworth BL, Atkinson CT, LaPointe DA, Hart PJ, Spiegel CS, Tweed EJ, Henneman C, LeBrun J, Denette T, DeMots R, Kozar KL, Triglia D, Lease D, Gregor A, Smith T, Duffy D (2005) Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria. Proc Natl Acad Sci USA 102:1531–1536. CrossRefPubMedGoogle Scholar
  88. Yackulic CB, Nichols JD, Reid J, Der R (2015) To predict the niche, model colonization and extinction. Ecology 96:16–23. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Brittany A. Mosher
    • 1
    Email author
  • Kathryn P. Huyvaert
    • 1
  • Larissa L. Bailey
    • 1
  1. 1.Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsUSA

Personalised recommendations