Advertisement

Oecologia

, Volume 187, Issue 3, pp 767–782 | Cite as

Strong specificity and network modularity at a very fine phylogenetic scale in the lichen genus Peltigera

  • P. L. Chagnon
  • N. Magain
  • J. Miadlikowska
  • F. Lutzoni
Community ecology – original research

Abstract

Identifying the drivers and evolutionary consequences of species interactions is a major goal of community ecology. Network-based analyses can provide mathematical tools to detect non-random patterns of interactions, and potentially help predicting the consequences of such patterns on evolutionary dynamics of symbiotic systems. Here, we characterize the structure of a lichen network at a very fine phylogenetic scale, by identifying the photosynthetic partners (i.e., cyanobacteria of the genus Nostoc) of lichenized fungi belonging to a monophyletic section of a single genus (i.e., section Polydactylon of the genus Peltigera), worldwide. Even at such a fine phylogenetic scale, we found that interactions were highly modular and anti-nested, indicating strong preferences in interactions. When considering local Peltigera communities, i.e., datasets at small spatial scales with only a slightly broader phylogenetic range, interactions remained modular but were asymmetric, with generalist Nostoc partners interacting with specialized Peltigera species. This asymmetry was not detected with our global spatial scale dataset. We discuss these results in the light of lichen community assembly, and explore how such interaction patterns may influence coevolution in lichens and the evolutionary stability of the mutualism in general.

Keywords

Cyanolichens Partner selection Mutualism Nostoc Symbiosis 

Notes

Acknowledgements

We are very thankful to many people that assisted us during various Peltigera collecting trips, as well as collaborators and curators of herbaria for providing material for this study.

Author contribution statement

PLC, NM, JM and FL planned and designed the research, NM, JM and FL conducted samplings and molecular analyses, PLC conducted numerical analyses, and PLC, NM, JM and FL wrote the manuscript.

Funding

This work was supported by the National Science Foundation (DEB-1025930 and DEB-1556995 to J.M. and F.L.), the Belgium American Educational Foundation (post-doctoral fellowship to N.M.) and the Killam Trust and Fonds de la Recherche du Québec, Nature et Technologies (post-doctoral fellowships to P.L.C.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2018_4159_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1175 kb)
442_2018_4159_MOESM2_ESM.pdf (928 kb)
Supplementary material 2 (PDF 927 kb)
442_2018_4159_MOESM3_ESM.pdf (762 kb)
Supplementary material 3 (PDF 761 kb)
442_2018_4159_MOESM4_ESM.pdf (4.6 mb)
Supplementary material 4 (PDF 4668 kb)
442_2018_4159_MOESM5_ESM.pdf (553 kb)
Supplementary material 5 (PDF 552 kb)
442_2018_4159_MOESM6_ESM.docx (104 kb)
Supplementary material 6 (DOCX 103 kb)
442_2018_4159_MOESM7_ESM.docx (17 kb)
Supplementary material 7 (DOCX 16 kb)

References

  1. Almeida-Neto M, Ulrich W (2011) A straightforward computational approach for measuring nestedness using quantitative matrices. Environ Model Softw 26:173–178.  https://doi.org/10.1016/j.envsoft.2010.08.003 Google Scholar
  2. Almeida-Neto M, Guimarães P, Guimarães JPR, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239.  https://doi.org/10.1111/j.0030-1299.2008.16644.x Google Scholar
  3. Altschul SF, Gish W, Miller W, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 PubMedGoogle Scholar
  4. Bar-Massada A, Belmaker J (2017) Non-stationarity in the co-occurrence patterns of species across environmental gradients. J Ecol 105:391–399.  https://doi.org/10.1111/1365-2745.12713 Google Scholar
  5. Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387.  https://doi.org/10.1073/pnas.1633576100 PubMedPubMedCentralGoogle Scholar
  6. Bascompte J, Jordano P, Olesen JM (2006) Asymetric Coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433.  https://doi.org/10.1126/science.1123412 PubMedGoogle Scholar
  7. Belinchón R, Yahr R, Ellis CJ (2015) Interactions among species with contrasting dispersal modes explain distributions for epiphytic lichens. Ecography 38:762–768Google Scholar
  8. Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21.  https://doi.org/10.1111/j.1461-0248.2008.01254.x PubMedGoogle Scholar
  9. Bonfante P, Genre A (2015) Arbuscular mycorrhizal dialogues: do you speak “plantish” or “fungish”? Trends Plant Sci 20:150–154PubMedGoogle Scholar
  10. Burgos E, Ceva H, Perazzo RPJ, Delbue AM (2007) Why nestedness in mutualistic networks? J Theor Biol 249:307–313.  https://doi.org/10.1016/j.jtbi.2007.07.030 PubMedGoogle Scholar
  11. Burns KC (2013) What causes size coupling in fruit-frugivore interaction webs? Ecology 94:295–300.  https://doi.org/10.1890/12-1161.1 PubMedGoogle Scholar
  12. Chacoff NP, Vázquez DP, Lomáscolo SB, Stevani EL, Dorado J, Padron B (2012) Evaluating sampling completeness in a desert plant-pollinator network. J Anim Ecol 81:190–200.  https://doi.org/10.1111/j.1365-2656.2011.01883.x PubMedGoogle Scholar
  13. Chagnon PL (2016) Seeing networks for what they are in mycorrhizal ecology. Fungal Ecol 24:148–154.  https://doi.org/10.1016/j.funeco.2016.05.004 Google Scholar
  14. Chagnon PL, Bradley RL, Klironomos JN (2015) Trait-based partner selection drives mycorrhizal network assembly. Oikos 124:1609–1616.  https://doi.org/10.1111/oik.01987 Google Scholar
  15. Chagnon PL, U’Ren JM, Miadlikowska J, Lutzoni F, Arnold AE (2016) Interaction type influences ecological network structure more than local abiotic conditions: evidence from endophytic and endolichenic fungi at a continental scale. Oecologia 180:181–191.  https://doi.org/10.1007/s00442-015-3457-5 PubMedGoogle Scholar
  16. Chao A, Colwell RK, Lin CW, Gotelli NJ (2009) Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90:1125–1133.  https://doi.org/10.1890/07-2147.1 PubMedGoogle Scholar
  17. Dal Grande F, Widmer I, Wagner HH, Scheidegger C (2012) Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Mol Ecol 21:3159–3172.  https://doi.org/10.1111/j.1365-294X.2012.05482.x Google Scholar
  18. Dal Grande F, Beck A, Cornejo C, Singh G, Cheenacharoen S, Nelsen MP, Scheidegger C (2014) Molecular phylogeny and symbiotic selectivity of the green algal genus Dictyochloropsis s.l. (Trebouxiophyceae): a polyphyletic and widespread group forming photobiont-mediated guilds in the lichen family Lobariaceae. New Phytol 202:455–470.  https://doi.org/10.1111/nph.12678 Google Scholar
  19. Danieli-Silva A, de Souza JMT, Donatti AJ, Campos RP, Vicente-Silva J, Freitas L, Varassin IG (2012) Do pollination syndromes cause modularity and predict interactions in a pollination network in tropical high-altitude grasslands? Oikos 121:35–43.  https://doi.org/10.1111/j.1600-0706.2011.19089.x Google Scholar
  20. Donatti CI, Guimarães PR, Galetti M, Pizo MA, Marquitti FMD, Dirzo R (2011) Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol Lett 14:773–781.  https://doi.org/10.1111/j.1461-0248.2011.01639.x PubMedGoogle Scholar
  21. Dorado J, Vá Zquez DP, Stevani EL, Chacoff NP (2011) Rareness and specialization in plant-pollinator networks. Ecology 92:19–25.  https://doi.org/10.1890/10-0794.1 PubMedGoogle Scholar
  22. Dormann CF, Strauss R (2014) A method for detecting modules in quantitative bipartite networks. Methods Ecol Evol 5:90–98.  https://doi.org/10.1111/2041-210X.12139 Google Scholar
  23. Dormann CF, Fründ J, Blüthgen N, Gruber G (2009) Indices, graphs and null models: analysing bipartite ecological networks. Open Ecol J 2:7–24.  https://doi.org/10.2174/1874213000902010007 Google Scholar
  24. Drovetski SV, Aghayan SA, Mata VA, Lopes RJ, Mode NA, Harvey JA, Voelker G (2014) Does the niche breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian Haemosporidia? Mol Ecol 23:3322–3329.  https://doi.org/10.1111/mec.12744 PubMedGoogle Scholar
  25. Dupont YL, Hansen DM, Olesen JM (2003) Structure of a plant–flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography (Cop) 26:301–310.  https://doi.org/10.1034/j.1600-0587.2003.03443.x Google Scholar
  26. Dupont YL, Padrón B, Olesen JM, Petanidou T (2009) Spatio-temporal variation in the structure of pollination networks. Oikos 118:1261–1269.  https://doi.org/10.1111/j.1600-0706.2009.17594.x Google Scholar
  27. Elvebakk A, Papaefthimiou D, Robertsen EH, Liaimer A (2008) Phylogenetic patterns among Nostoc cyanobionts within bi- and tripartite lichens of the genus Pannaria. J Phycol 44:1049–1059.  https://doi.org/10.1111/j.1529-8817.2008.00556.x Google Scholar
  28. Ence DD, Carstens BC (2011) SpedeSTEM: a rapid and accurate method for species delimitation. Mol Ecol Resour 11:473–480.  https://doi.org/10.1111/j.1755-0998.2010.02947.x PubMedGoogle Scholar
  29. Fernández-Mendoza F, Domaschke S, García MA, Jordan P, Martin MP, Printzen C (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol Ecol 20:1208–1232.  https://doi.org/10.1111/j.1365-294X.2010.04993.x PubMedGoogle Scholar
  30. Ferriere R, Bronstein JL, Rinaldi S, Law R, Gauduchon M (2002) Cheating and the evolutionary stability of mutualisms. Proc Biol Sci 269:773–780.  https://doi.org/10.1098/rspb.2001.1900 PubMedPubMedCentralGoogle Scholar
  31. Feuerer T, Hawksworth DL (2007) Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions. Biodivers Conserv 16:85–98.  https://doi.org/10.1007/s10531-006-9142-6 Google Scholar
  32. Fontaine C, Guimarães PR, Kéfi S, Loeuille N, Memmott J, van der Putten WH, van Veen FJF, Thébault E (2011) The ecological and evolutionary implications of merging different types of networks. Ecol Lett 14:1170–1181.  https://doi.org/10.1111/j.1461-0248.2011.01688.x PubMedGoogle Scholar
  33. Fort H, Vázquez DP, Lan BL (2016) Abundance and generalisation in mutualistic networks: solving the chicken-and-egg dilemma. Ecol Lett 19:4–11.  https://doi.org/10.1111/ele.12535 PubMedGoogle Scholar
  34. Gómez JM, Verdú M, Perfectti F (2010) Ecological interactions are evolutionarily conserved across the entire tree of life. Nature 465:918–921.  https://doi.org/10.1038/nature09113 PubMedGoogle Scholar
  35. Gravel D, Poisot T, Albouy C, Velez L, Mouillot D (2013) Inferring food web structure from predator-prey body size relationships. Methods Ecol Evol 4:1083–1090.  https://doi.org/10.1111/2041-210X.12103 Google Scholar
  36. Guimarães PR, Rico-Gray V, dos Reis SF, Thompson JN (2006) Asymmetries in specialization in ant-plant mutualistic networks. Proc Biol Sci 273:2041–2047.  https://doi.org/10.1098/rspb.2006.3548 PubMedPubMedCentralGoogle Scholar
  37. Guimarães PR, Rico-Gray V, Oliveira PS, Izzo TJ, dos Reis SF, Thompson JN (2007) Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Curr Biol 17:1797–1803.  https://doi.org/10.1016/j.cub.2007.09.059 PubMedGoogle Scholar
  38. Guimarães PR, Jordano P, Thompson JN (2011) Evolution and coevolution in mutualistic networks. Ecol Lett 14:877–885.  https://doi.org/10.1111/j.1461-0248.2011.01649.x PubMedGoogle Scholar
  39. Herrera CM (1982) Breeding systems and dispersal-related maternal reproductive effort of southern spanish bird-dispersed plants. Evolution 36:1299–1314.  https://doi.org/10.2307/2408162 PubMedGoogle Scholar
  40. Huelsenbeck JP, Andolfatto P, Huelsenbeck ET (2011) Structurama: Bayesian inference of population structure. Evol Bioinforma 2011:55–59.  https://doi.org/10.4137/EBO.S6761 Google Scholar
  41. Inouye B, Stinchcombe JR (2001) Relationships between ecological interaction modifications and diffuse coevolution: similarities, differences, and causal links. Oikos 95:353–360.  https://doi.org/10.1034/j.1600-0706.2001.950218.x Google Scholar
  42. Johnstone RA, Bshary R (2002) From parasitism to mutualism: partner control in asymmetric interactions. Ecol Lett 5:634–639.  https://doi.org/10.1046/j.1461-0248.2002.00358.x Google Scholar
  43. Joppa LN, Bascompte J, Montoya JM, Solé RV, Sanderson J, Pimm SL (2009) Reciprocal specialization in ecological networks. Ecol Lett 12:961–969.  https://doi.org/10.1111/j.1461-0248.2009.01341.x PubMedGoogle Scholar
  44. Joppa LN, Montoya JM, Solé R, Pimm SL (2010) On nestedness in ecological networks. Evol Ecol Res 12:35–46Google Scholar
  45. Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am Nat 129:657–677.  https://doi.org/10.1086/284665 Google Scholar
  46. Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci USA 111:13715–13720.  https://doi.org/10.1073/pnas.1216057111 PubMedPubMedCentralGoogle Scholar
  47. Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-rhizobium mutualism. Nature 425:78–81.  https://doi.org/10.1038/nature01931 PubMedGoogle Scholar
  48. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882.  https://doi.org/10.1126/science.1208473 PubMedGoogle Scholar
  49. Kirk P, Ainsworth G, Bisby G (2008) Dictionary of the fungi. CABI Publishing, WallingfordGoogle Scholar
  50. Krasnov BR, Poulin R, Shenbrot GI, Mouillot D, Khokhlova IS (2004) Ectoparasitic “Jacks-of-All-Trades”: relationship between abundance and host specificity in fleas (Siphonaptera) parasitic on small mammals. Am Nat 164:506–516.  https://doi.org/10.1086/423716 PubMedGoogle Scholar
  51. Leavitt SD, Nelsen MP, Lumbsch HT, Johnson LA, St-Clair LL (2013) Symbiont flexibility in subalpine rock shield lichen communities in the Southwestern USA. Bryologist 116:149–161.  https://doi.org/10.1639/0007-2745-116.2.149 Google Scholar
  52. Leavitt SD, Kraichak E, Nelsen MP, Altermann S, Divakar PK, Alors D, Esslinger TL, Crespo A, Lumbsch T (2015) Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Mol Ecol 24:3779–3797.  https://doi.org/10.1111/mec.13271 PubMedGoogle Scholar
  53. Levin SA, Segel LA, Adler FR (1990) Diffuse coevolution in plant-herbivore communities. Theor Popul Biol 37:171–191.  https://doi.org/10.1016/0040-5809(90)90034-S Google Scholar
  54. Lindgren H, Velmala S, Högnabba F, Goward T, Holien H, Myllys L (2014) High fungal selectivity for algal symbionts in the genus Bryoria. Lichenol 46:681–695.  https://doi.org/10.1017/S0024282914000279 Google Scholar
  55. Lu J, Magain N, Miadlikowska J, Coyle J, Truong C, Lutzoni F (2018) Patterns of symbiotic associations between Peltigera and Nostoc at an intrabiome scale. Am J Bot (in press)Google Scholar
  56. Lutzoni F, Miadlikowska J (2009) Lichens. Curr Biol.  https://doi.org/10.1016/j.cub.2009.04.034 PubMedGoogle Scholar
  57. Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940.  https://doi.org/10.1038/35082053 PubMedGoogle Scholar
  58. Maddison D, Maddison W. (2005) MacClade v. 4.08. Sunderland: Sinauer AssociatesGoogle Scholar
  59. Magain N, Miadlikowska J, Goffinet B, Sérusiaux E, Lutzoni F (2017a) Macroevolution of specificity in cyanolichens of the genus Peltigera section Polydactylon (Lecanoromycetes, Ascomycota). Syst Biol 66:74–99.  https://doi.org/10.1093/sysbio/syw065 PubMedGoogle Scholar
  60. Magain N, Miadlikowska J, Mueller O, Gajdeczka M, Salamov AA, Dubchak I, Grigoriev I, Goffinet B, Sérusiaux E, Lutzoni F (2017b) Conserved genomic collinearity as a source of broadly applicable, fast evolving, markers to resolve species complexes: a case study using the lichen-forming genus Peltigera section Polydactylon. Mol Phyl Evol 117:10–29Google Scholar
  61. Maglianesi MA, Blüthgen N, Böhning-Gaese K, Schleuning M (2015) Functional structure and specialization in three tropical plant-hummingbird interaction networks across an elevational gradient in Costa Rica. Ecography (Cop) 38:1119–1128.  https://doi.org/10.1111/ecog.01538 Google Scholar
  62. Martín González AM, Allesina S, Rodrigo A, Bosch J (2012) Drivers of compartmentalization in a Mediterranean pollination network. Oikos 121:2001–2013.  https://doi.org/10.1111/j.1600-0706.2012.20279.x Google Scholar
  63. Martos F, Munoz F, Pailler T, Kottke I, Gonneau C, Selosse MA (2012) The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Mol Ecol 21:5098–5109.  https://doi.org/10.1111/j.1365-294X.2012.05692.x PubMedGoogle Scholar
  64. Mello MAR, Marquitti FMD, Guimarães PR, Kalko EKV, Jordano P, de Aguiar MAM (2011) The modularity of seed dispersal: differences in structure and robustness between bat- and bird-fruit networks. Oecologia 167:131–140.  https://doi.org/10.1007/s00442-011-1984-2 PubMedGoogle Scholar
  65. Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc London Ser B 271:2605–2611.  https://doi.org/10.1098/rspb.2004.2909 Google Scholar
  66. Miadlikowska J, Kauff F, Hofstetter V, Fraker E, Grube M, Hafellner J, Reeb V, Hodkinson BP, Kukwa M, Lücking R, Hestmark G, Otalora MG, Rauhut A, Büdel B, Scheidegger C, Timdal E, Stenroos S, Brodo I, Perlmutter GB, Ertz D, Diederich P, Lendemer JC, May P, Schoch CL, Arnold AE, Gueidan C, Tripp E, Yahr R, Robertson C, Lutzoni F (2006) New insights into the classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from a phylogentic analysis of three ribosomal RNA and two protein-coding genes. Mycologia 98:1088–1103PubMedGoogle Scholar
  67. Miadlikowska J, Kauff F, Högnabba F, Oliver JC, Molnár K, Fraker E, Gaya E, Hafellner J, Hofstetter V, Gueidan C, Otálora MA, Hodkinson B, Kukwa M, Lücking R, Björk C, Sipman HJ, Burgaz AR, Thell A, Passo A, Myllys L, Goward T, Fernández-Brime S, Hestmark G, Lendemer J, Lumbsch HT, Schmull M, Schoch CL, Sérusiaux E, Maddison DR, Arnold AE, Lutzoni F, Stenroos S (2014) Multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 312 genera and 66 families. Mol Phylogenet Evol 79:132–168PubMedGoogle Scholar
  68. Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdú M (2012) The network structure of plant-arbuscular mycorrhizal fungi. New Phytol 194:536–547.  https://doi.org/10.1111/j.1469-8137.2011.04045.x PubMedGoogle Scholar
  69. Muggia L, Vancurova L, Škaloud P, Peksa O, Wedin M, Grube M (2013) The symbiotic playground of lichen thalli: a highly flexible photobiont association in rock-inhabiting lichens. FEMS Microbiol Ecol 85:313–323.  https://doi.org/10.1111/1574-6941.12120 PubMedGoogle Scholar
  70. Muggia L, Pérez-Ortega S, Kopun T, Zellnig G, Grube M (2014) Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann Bot 114:463–475.  https://doi.org/10.1093/aob/mcu146 PubMedPubMedCentralGoogle Scholar
  71. Nadyeina O, Dymytrova L, Naumovych A, Postoyalkin S, Werth S, Cheenacharoen S, Scheidgger C (2014) Microclimatic differentiation of gene pools in the Lobaria pulmonaria symbiosis in a primeval forest landscape. Mol Ecol 23:5164–5178.  https://doi.org/10.1111/mec.12928 PubMedGoogle Scholar
  72. Nash TH (2008) Lichen biology. Cambridge University Press, New YorkGoogle Scholar
  73. Nielsen A, Bascompte J (2007) Ecological networks, nestedness and sampling effort. J Ecol 95:1134–1141.  https://doi.org/10.1111/j.1365-2745.2007.01271.x Google Scholar
  74. Nourani Y, Andresen B (1999) A comparison of simulated annealing cooling strategies. J Phys A 31:8373–8385.  https://doi.org/10.1088/0305-4470/31/41/011 Google Scholar
  75. O’Brien HE, Miadlikowska J, Lutzoni F (2005) Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur J Phycol 40:363–378.  https://doi.org/10.1080/09670260500342647 Google Scholar
  76. O’Brien HE, Miadlikowska J, Lutzoni F (2009) Assessing reproductive isolation in highly diverse communities of the lichen-forming fungal genus Peltigera. Evolution (N Y) 63:2076–2086.  https://doi.org/10.1111/j.1558-5646.2009.00685.x Google Scholar
  77. O’Brien HE, Miadlikowska J, Lutzoni F (2013) Assessing population structure and host specialization in lichenized cyanobacteria. New Phytol 198:557–566.  https://doi.org/10.1111/nph.12165 PubMedGoogle Scholar
  78. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MH, Szoecs E, Wagner H (2017). vegan: Community Ecology Package. R package version 2.4-5. https://CRAN.R-project.org/package=vegan
  79. Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci USA 104:19891–19896.  https://doi.org/10.1073/pnas.0706375104 PubMedPubMedCentralGoogle Scholar
  80. Otálora MAG, Martínez I, O’Brien H, Molina MC, Aragon G, Lutzoni F (2010) Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Mol Phyl Evol 56:1089–1095.  https://doi.org/10.1016/j.ympev.2010.05.013 Google Scholar
  81. Otálora MA, Salvador C, Martínez I, Aragón G (2013) Does the reproductive strategy affect the transmission and genetic diversity of bionts in cyanolichens? A case study using two closely related species. Microb Ecol 65(2):517–530PubMedGoogle Scholar
  82. Ovaskainen O, Hottola J, Shtonen J (2010) Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology 91:2514–2521.  https://doi.org/10.1890/10-0173.1 PubMedGoogle Scholar
  83. Ovaskainen O, Tikhonov G, Norberg A, Blanchet FG, Duan L, Dunson D, Roslin T, Abrego N (2017) How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol Lett 20:561–576.  https://doi.org/10.1111/ele.12757 PubMedGoogle Scholar
  84. Peksa O, Škaloud P (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol Ecol 20:3936–3948.  https://doi.org/10.1111/j.1365-294X.2011.05168.x PubMedGoogle Scholar
  85. Piercey-Normore M (2009) Vegetatively reproducing fungi in three genera of the Parmeliaceae share divergent algal partners. Bryologist 112:773–785.  https://doi.org/10.1639/0007-2745-112.4.773 Google Scholar
  86. Pimm SL, Lawton JH (1980) Are food webs divided into compartements? J Anim Ecol 49:879–898.  https://doi.org/10.2307/4233 Google Scholar
  87. Plett JM, Daguerre Y, Wittulsky S, Vayssières A, Deveau A, Melton SJ, Kohler A, Morrell-Falvey JL, Brun A, Veneault-Fourrey C, Martin F (2014) Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc Natl Acad Sci USA 111:8299–8304.  https://doi.org/10.1073/pnas.1322671111 PubMedPubMedCentralGoogle Scholar
  88. Podani J, Schmera D (2011) A new conceptual and methodological framework for exploring and explaining pattern in presence–absence data. Oikos 120:1625–1638.  https://doi.org/10.1111/j.1600-0706.2011.19451.x Google Scholar
  89. Podani J, Schmera D (2012) A comparative evaluation of pairwise nestedness measures. Ecography (Cop) 35:889–900.  https://doi.org/10.1111/j.1600-0587.2011.07319.x Google Scholar
  90. Podani J, Ricotta C, Schmera D (2013) A general framework for analyzing beta diversity, nestedness and related community-level phenomena based on abundance data. Ecol Complex 15:52–61.  https://doi.org/10.1016/j.ecocom.2013.03.002 Google Scholar
  91. Porter SS, Simms EL (2014) Selection for cheating across disparate environments in the legume-rhizobium mutualism. Ecol Lett 17:1121–1129PubMedGoogle Scholar
  92. Poulin R (1998) Large-scale patterns of host use by parasites of freshwater fishes. Ecol Lett 1:118–128.  https://doi.org/10.1046/j.1461-0248.1998.00022.x Google Scholar
  93. Poulin R, Guégan JF (2000) Nestedness, anti-nestedness, and the relationship between prevalence and intensity in ectoparasite assemblages of marine fish: a spatial model of species coexistence. Int J Parasitol 30:1147–1152.  https://doi.org/10.1016/S0020-7519(00)00102-8 PubMedGoogle Scholar
  94. Price PW (1980) Evolutionary biology of parasites. Princeton University Press, PrincetonGoogle Scholar
  95. Reid NM, Carstens BC (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evol Biol 12:196.  https://doi.org/10.1186/1471-2148-12-196 PubMedPubMedCentralGoogle Scholar
  96. Rezende EL, Lavabre JE, Guimaraes PR Jr, Jordano P, Bascompte J (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925.  https://doi.org/10.1038/nature05956 PubMedGoogle Scholar
  97. Rikkinen J (2003) Ecological and evolutionary role of photobiont-mediated guilds in lichens. Symbiosis 34:99–110Google Scholar
  98. Rikkinen J, Oksanen I, Lohtander K (2002) Lichen guilds share related cyanobacterial symbionts. Science 297(5580):357PubMedGoogle Scholar
  99. Rivera-Hutinel A, Bustamante RO, Marín VH, Medel R (2012) Effects of sampling completeness on the structure of plant-pollinator networks. Ecology 93:1593–1603.  https://doi.org/10.1890/11-1803.1 PubMedGoogle Scholar
  100. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690.  https://doi.org/10.1093/bioinformatics/btl446 PubMedGoogle Scholar
  101. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57:758–771.  https://doi.org/10.1080/10635150802429642 PubMedGoogle Scholar
  102. Stang M, Klinkhamer PGL, van der Meijden E (2007) Asymmetric specialization and extinction risk in plant-flower visitor webs: a matter of morphology or abundance? Oecologia 151:442–453.  https://doi.org/10.1007/s00442-006-0585-y PubMedGoogle Scholar
  103. Stang M, Klinkhamer PG, Waser NM, Stang I, van der Meijden E (2009) Size-specific interaction patterns and size matching in a plant-pollinator interaction web. Ann Bot 103:1459–1469.  https://doi.org/10.1093/aob/mcp027 PubMedPubMedCentralGoogle Scholar
  104. Steidinger BS, Bever JD (2014) The coexistence of hosts with different abilities to discriminate against cheater partners: an evolutionary game-theory approach. Am Nat 183:762–770.  https://doi.org/10.1086/675859 PubMedGoogle Scholar
  105. Stenroos S, Högnabba F, Myllys L, Hyvonen J, Thell A (2006) High selectivity in symbiotic associations of lichenized ascomycetes and cyanobacteria. Cladistics 22:230–238.  https://doi.org/10.1111/j.1096-0031.2006.00101.x Google Scholar
  106. Strauss S, Irwin R (2004) Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu Rev Ecol Evol Syst 35:435–466.  https://doi.org/10.1146/annurev.ecolsys.35.112202.130215 Google Scholar
  107. Swarts ND, Sinclair EA, Francis A, Dixon KW (2010) Ecological specialization in mycorrhizal symbiosis leads to rarity in an endangered orchid. Mol Ecol 19:3226–3242.  https://doi.org/10.1111/j.1365-294X.2010.04736.x PubMedGoogle Scholar
  108. Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329(80):853–856.  https://doi.org/10.1126/science.1188321 PubMedGoogle Scholar
  109. Thompson JN (2009) The coevolving web of life. Am Nat 173:125–140.  https://doi.org/10.1086/595752 PubMedGoogle Scholar
  110. Toju H, Guimarães PR, Olesen JM, Thompson JN (2014) Assembly of complex plant–fungus networks. Nat Commun 5:5273.  https://doi.org/10.1038/ncomms6273 PubMedPubMedCentralGoogle Scholar
  111. Torrecillas E, del Mar Alguacil M, Roldán A, Díaz G, Montesinos-Navarro A, Torres MP (2014) Modularity reveals the tendency of arbuscular mycorrhizal fungi to interact differently with generalist and specialist plant species in gypsum soils. Appl Environ Microbiol 80:5457–5466.  https://doi.org/10.1128/AEM.01358-14 PubMedPubMedCentralGoogle Scholar
  112. Ulanowicz RE (1986) Growth and development: ecosystems phenomenology. Springer, New YorkGoogle Scholar
  113. Ulanowicz RE (1997) Ecology: the ascendant perspective. Columbia University Press, New YorkGoogle Scholar
  114. Ulanowicz RE, Kemp WM (1979) Toward canonical trophic aggregations. Am Nat 114:871–883.  https://doi.org/10.1086/283534 Google Scholar
  115. Ulrich W, Almeida-Neto M (2012) On the meanings of nestedness: back to the basics. Ecography (Cop) 35:865–871.  https://doi.org/10.1111/j.1600-0587.2012.07671.x Google Scholar
  116. Vázquez DP, Aizen MA (2004) Asymmetric specialization: a pervasive feature of plant-pollinator interactions. Ecology 85:1251–1257.  https://doi.org/10.1890/03-3112 Google Scholar
  117. Vázquez DP, Poulin R, Krasnov BR, Shenbrot GI (2005) Species abundance and the distribution of specialization in host-parasite interaction networks. J Anim Ecol 74:946–955.  https://doi.org/10.1111/j.1365-2656.2005.00992.x Google Scholar
  118. Vázquez DP, Melián CJ, Williams NM, Blüthgen N, Krasnov BR, Poulin R (2007) Species abundance and asymmetric interaction strength in ecological networks. Oikos 116:1120–1127.  https://doi.org/10.1111/j.2007.0030-1299.15828.x Google Scholar
  119. Vellend M (2016) The theory of ecological communities. Princeton University Press, PrincetonGoogle Scholar
  120. Wardhaugh CW, Edwards W, Stork NE (2015) The specialization and structure of antagonistic and mutualistic networks of beetles on rainforest canopy trees. Biol J Linn Soc 114:287–295.  https://doi.org/10.1111/bij.12430 Google Scholar
  121. Wedin M, Döring H, Gilenstam G (2004) Saprotrophy and lichenization as options for the same fungal species on different substrata: environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytol 164:459–465.  https://doi.org/10.1111/j.1469-8137.2004.01198.x Google Scholar
  122. Wilson DS, Yoshimura J (1994) On the coexistence of specialists and generalists. Am Nat 144:692–707.  https://doi.org/10.2307/2678832 Google Scholar
  123. Wirtz N, Lumbsch HT, Green TGA, Türk R, Pintado A, Sancho L, Schroeter B (2003) Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytol 160:177–183.  https://doi.org/10.1046/j.1469-8137.2003.00859.x Google Scholar
  124. Yahr R, Vilgalys R, Depriest PT (2004) Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Mol Ecol 13:3367–3378.  https://doi.org/10.1111/j.1365-294X.2004.02350.x PubMedGoogle Scholar
  125. Yahr R, Vilgalys R, Depriest PT (2006) Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol 171(4):847–860PubMedGoogle Scholar
  126. Yang Z, Rannala B (2010) Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci USA 107:9264–9269.  https://doi.org/10.1073/pnas.0913022107 PubMedPubMedCentralGoogle Scholar
  127. Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876.  https://doi.org/10.1093/bioinformatics/btt499 PubMedPubMedCentralGoogle Scholar
  128. Zúñiga C, Leiva D, Carú M, Orlando J (2017) Substrates of Peltigera lichens as a potential source of cyanobtionts. Microb Ecol 74(3):561–569.  https://doi.org/10.1007/s00248-017-0969-z PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Départment des Sciences Biologiques, Institut de Recherche en Biologie VégétaleUniversité de MontréalMontréalCanada
  2. 2.Department of BiologyDuke UniversityDurhamUSA

Personalised recommendations